Regulating mesopore structures of support toward enhanced selective hydrogenation of dimethyl oxalate to methyl glycolate on Ag catalysts

介孔材料 选择性 催化作用 扩散 草酸盐 介孔二氧化硅 化学工程 化学 材料科学 无机化学 纳米技术 有机化学 物理 工程类 热力学
作者
Zuwei Luo,Xiaofeng Xu,Guilin Dong,Yueqiang Cao,Shen Hu,Guanghua Ye,Yi‐An Zhu,Jinghong Zhou,Wei Li,Xinggui Zhou
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:450: 138397-138397 被引量:24
标识
DOI:10.1016/j.cej.2022.138397
摘要

Precisely regulating mesopore structures toward enhanced diffusion of reactants and targeted product is of great significance for achieving simultaneously improved activity and selectivity, which is exemplified by this work employing mesoporous silica with distinct structured mesopores as support for Ag catalysts to selectively hydrogenate dimethyl oxalate (DMO) into methyl glycolate (MG). Mesoporous silica nanosphere (MSNS) with center-radial pores shows shorter pore length than SBA-15 with parallel mesopores, which is beneficial for the diffusion process and thus gives rise to enhanced hydrogenation activity. Inspired by these insights, MSNSs sized in 50, 90, 120 and 160 nm are further synthesized to regulate pore length and systematically explore their effects on the reaction. The diffusion process is enhanced with decreasing the size of MSNS from 160 to 50 nm, as elucidated by the effective diffusion time constant (De/R2) determined by zero-length column (ZLC) method. Accordingly, DMO can facilely diffuse into the mesopores with shorter length to access the active sites while the formed MG product can easily diffuse out to avoid the over-hydrogenation process, which is corroborated by the comparison for performances of these Ag/MSNSs catalysts. Notably, a moderately short pore length, balancing well the diffusion and hydrogenation process, is more preferable for achieving both higher activity and better selectivity to MG, and MSNS sized in 90 nm supported Ag catalyst thus exhibits the greatest performances, with MG selectivity up to 96.6 % at 99.7 % of DMO conversion.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wei发布了新的文献求助10
刚刚
Nature完成签到,获得积分10
刚刚
樱桃苏打水完成签到,获得积分10
1秒前
zhui发布了新的文献求助10
1秒前
金色热浪发布了新的文献求助10
1秒前
pinging应助讲你ing采纳,获得10
3秒前
小九完成签到 ,获得积分10
4秒前
华仔应助科研通管家采纳,获得10
5秒前
英俊的铭应助科研通管家采纳,获得10
5秒前
SciGPT应助科研通管家采纳,获得10
5秒前
ivy应助科研通管家采纳,获得10
6秒前
pluto应助科研通管家采纳,获得10
6秒前
喵酱完成签到,获得积分10
6秒前
6秒前
搜集达人应助科研通管家采纳,获得10
6秒前
科研通AI5应助科研通管家采纳,获得30
6秒前
敬老院N号应助科研通管家采纳,获得30
6秒前
Hello应助科研通管家采纳,获得10
6秒前
6秒前
Ava应助科研通管家采纳,获得30
6秒前
淡定的思松应助ww采纳,获得10
6秒前
cxh发布了新的文献求助10
7秒前
7秒前
winstar完成签到,获得积分10
7秒前
Amai发布了新的文献求助20
8秒前
langzi发布了新的文献求助10
8秒前
ZH的天方夜谭完成签到,获得积分20
8秒前
酷波er应助Rrr采纳,获得10
8秒前
Rhodomyrtus关注了科研通微信公众号
8秒前
wei完成签到,获得积分10
9秒前
9秒前
Qinruirui完成签到,获得积分10
9秒前
Owen应助xia采纳,获得10
9秒前
ddy完成签到,获得积分10
10秒前
zmy发布了新的文献求助10
10秒前
鳗鱼厉发布了新的文献求助10
10秒前
孤存完成签到 ,获得积分10
10秒前
zho关闭了zho文献求助
10秒前
11秒前
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794