Neural Networks Implemented by Differential Evolutionary Algorithms to Counter Attacks

计算机科学 过度拟合 人工神经网络 卷积神经网络 人工智能 稳健性(进化) 模式识别(心理学) 算法 机器学习 生物化学 基因 化学
作者
Qingfeng Chen,Jing Wu,Jing Liu,Han Yu
标识
DOI:10.1109/cscloud-edgecom54986.2022.00025
摘要

It is urgent and necessary to investigate the adversarial attacks on different models, the attack patterns and attack methods of the adversarial attacks. In this paper, three convolutional neural network models, LeNet, ResNet and DenseNet, were used to train image recognition for the Cifar-10 multispecies dataset, and a differential evolutionary algorithm was used to implement a counterattack on the neural network. Among them, the Drop-out mechanism and Batch-Nomalization layer were added to the neural network model to solve the overfitting problem and improve the gradient dispersion problem of the neural network, respectively, and finally the differential evolution algorithm was used to achieve the attack on the neural network model. The experimental results have shown that the image recognition accuracies of LeNet, ResNet, and DenseNet models reached 53.83%, 92.95%, and 93.17%, respectively. When the differential evolutionary algorithm was used to implement the adversarial attack on the three neural network models, 93%, 78%, and 69% were achieved, respectively. Comparing the attack success rate of the three network models, it can be found that the result is consistent with the image recognition rate and network structure robustness of the three models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Harish发布了新的文献求助10
1秒前
任我行发布了新的文献求助30
1秒前
2秒前
健忘的飞雪完成签到,获得积分10
3秒前
温柔凌晴应助盛夏如花采纳,获得10
3秒前
Lucas应助大笨笨采纳,获得30
6秒前
ding应助CC1030采纳,获得30
7秒前
7秒前
8秒前
Jjj发布了新的文献求助10
8秒前
11秒前
12秒前
12秒前
12秒前
诚心之桃发布了新的文献求助10
13秒前
开朗断秋发布了新的文献求助10
13秒前
铛铛铛完成签到,获得积分10
14秒前
快乐的花果山完成签到,获得积分10
15秒前
16秒前
小白发布了新的文献求助10
17秒前
无心的香发布了新的文献求助10
17秒前
18秒前
乐观友菱发布了新的文献求助10
18秒前
冷酷跳跳糖完成签到,获得积分10
19秒前
怡然鹭洋给怡然鹭洋的求助进行了留言
19秒前
ShengjuChen完成签到 ,获得积分10
23秒前
美丽芷波发布了新的文献求助20
23秒前
abcdefg发布了新的文献求助10
24秒前
寻道图强完成签到,获得积分0
25秒前
李健应助Slemon采纳,获得10
26秒前
碧蓝成危完成签到,获得积分10
27秒前
电动猪皮发布了新的文献求助10
28秒前
29秒前
周粥完成签到 ,获得积分10
32秒前
FJ发布了新的文献求助10
34秒前
36秒前
温柔凌晴应助盛夏如花采纳,获得10
37秒前
伊雪儿发布了新的文献求助10
39秒前
39秒前
美丽芷波完成签到,获得积分10
42秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3475587
求助须知:如何正确求助?哪些是违规求助? 3067456
关于积分的说明 9104167
捐赠科研通 2758955
什么是DOI,文献DOI怎么找? 1513845
邀请新用户注册赠送积分活动 699823
科研通“疑难数据库(出版商)”最低求助积分说明 699197