亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Defect identification method of carbon fiber sucker rod based on GoogLeNet-based deep learning model and transfer learning

材料科学 抽油杆 学习迁移 鉴定(生物学) 纤维 吸盘 复合材料 人工智能 计算机科学 解剖 植物 生物
作者
Chenquan Hua,Siwei Chen,Guoyan Xu,Lu Yang,Baoyu Du
出处
期刊:Materials today communications [Elsevier]
卷期号:33: 104228-104228 被引量:3
标识
DOI:10.1016/j.mtcomm.2022.104228
摘要

Carbon fiber sucker rods are widely used in oil production site due to their light weight, high strength and corrosion resistance, but there is still a lack of effective internal defect detection methods during production and installation. Aiming at the characteristics of irregular interface in the sucker rod, a novel defect identification method of carbon fiber sucker rod based on multi-sensor information fusion and GoogLeNet-based deep learning model was proposed to identify online the internal defects of carbon fiber sucker rod. First, the full coverage scan of the sucker rod in the cross-section was performed by a water-immersed ultrasonic array containing 32 probes, and the corresponding ultrasonic reflection signals was obtained. Then, a multi-sensor information fusion method was proposed to integrate amplitude and flight time of received ultrasonic reflection signals with the spatial angle information of each probe into defect images. Time signal waveforms of ultrasonic signals with different defects were mapped into different defect images, so that we can rely on deep learning models in the field of image identification to identify those defects. Finally, A GoogLeNet-based deep learning model were trained to identify the image-based defect of the carbon fiber rod. The transfer learning method, which transferred weights of the pre-trained GoogLeNet model by ImageNet large database to the GoogLeNet-based defect identification model, was adopted to enhance the convergence speed and generalization ability of the model for insufficient training samples. The testing results show that the overall defect identification accuracy of the trained GoogLeNet-based deep learning model was 99.72%, which can identify effectively four typical defects and no defects of carbon fiber sucker rods. • An immersed ultrasonic array detection system was used to scan the cross section of sucker rod. • A multi-sensor information fusion method was proposed to map time signal waveforms into the defect images. • A GoogLeNet-based deep learning model is proposed to identify defect images. • Transfer learning is used to train the model for the small sample.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星辰大海应助铭铭采纳,获得10
6秒前
15秒前
Fluoxtine发布了新的文献求助10
19秒前
lyw发布了新的文献求助10
20秒前
25秒前
BowieHuang应助科研通管家采纳,获得10
28秒前
科研通AI2S应助科研通管家采纳,获得10
28秒前
37秒前
铭铭发布了新的文献求助10
40秒前
herococa完成签到,获得积分0
41秒前
是谁还没睡完成签到 ,获得积分10
1分钟前
Fluoxtine发布了新的文献求助10
1分钟前
学术交流高完成签到 ,获得积分10
1分钟前
凡舍完成签到 ,获得积分10
1分钟前
搜集达人应助dawn采纳,获得10
1分钟前
1分钟前
dawn完成签到,获得积分20
1分钟前
dawn发布了新的文献求助10
1分钟前
2分钟前
汉堡包应助Fluoxtine采纳,获得10
2分钟前
xixi发布了新的文献求助10
2分钟前
丘比特应助科研通管家采纳,获得10
2分钟前
FashionBoy应助科研通管家采纳,获得10
2分钟前
汉堡包应助科研通管家采纳,获得10
2分钟前
慕青应助科研通管家采纳,获得10
2分钟前
kuoping完成签到,获得积分0
2分钟前
2分钟前
机灵自中完成签到,获得积分10
2分钟前
Stellarshi517发布了新的文献求助20
2分钟前
2分钟前
科研通AI6.1应助xixi采纳,获得10
2分钟前
lyw发布了新的文献求助10
2分钟前
田様应助Stellarshi517采纳,获得20
3分钟前
3分钟前
kuiuLinvk发布了新的文献求助10
3分钟前
3分钟前
kuiuLinvk完成签到,获得积分10
3分钟前
zsmj23完成签到 ,获得积分0
3分钟前
采薇发布了新的文献求助10
3分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
Tip-in balloon grenadoplasty for uncrossable chronic total occlusions 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5788568
求助须知:如何正确求助?哪些是违规求助? 5709401
关于积分的说明 15473692
捐赠科研通 4916583
什么是DOI,文献DOI怎么找? 2646482
邀请新用户注册赠送积分活动 1594146
关于科研通互助平台的介绍 1548577