Defect identification method of carbon fiber sucker rod based on GoogLeNet-based deep learning model and transfer learning

材料科学 抽油杆 学习迁移 鉴定(生物学) 纤维 吸盘 复合材料 人工智能 计算机科学 解剖 植物 生物
作者
Chenquan Hua,Siwei Chen,Guoyan Xu,Lu Yang,Baoyu Du
出处
期刊:Materials today communications [Elsevier]
卷期号:33: 104228-104228 被引量:3
标识
DOI:10.1016/j.mtcomm.2022.104228
摘要

Carbon fiber sucker rods are widely used in oil production site due to their light weight, high strength and corrosion resistance, but there is still a lack of effective internal defect detection methods during production and installation. Aiming at the characteristics of irregular interface in the sucker rod, a novel defect identification method of carbon fiber sucker rod based on multi-sensor information fusion and GoogLeNet-based deep learning model was proposed to identify online the internal defects of carbon fiber sucker rod. First, the full coverage scan of the sucker rod in the cross-section was performed by a water-immersed ultrasonic array containing 32 probes, and the corresponding ultrasonic reflection signals was obtained. Then, a multi-sensor information fusion method was proposed to integrate amplitude and flight time of received ultrasonic reflection signals with the spatial angle information of each probe into defect images. Time signal waveforms of ultrasonic signals with different defects were mapped into different defect images, so that we can rely on deep learning models in the field of image identification to identify those defects. Finally, A GoogLeNet-based deep learning model were trained to identify the image-based defect of the carbon fiber rod. The transfer learning method, which transferred weights of the pre-trained GoogLeNet model by ImageNet large database to the GoogLeNet-based defect identification model, was adopted to enhance the convergence speed and generalization ability of the model for insufficient training samples. The testing results show that the overall defect identification accuracy of the trained GoogLeNet-based deep learning model was 99.72%, which can identify effectively four typical defects and no defects of carbon fiber sucker rods. • An immersed ultrasonic array detection system was used to scan the cross section of sucker rod. • A multi-sensor information fusion method was proposed to map time signal waveforms into the defect images. • A GoogLeNet-based deep learning model is proposed to identify defect images. • Transfer learning is used to train the model for the small sample.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
共享精神应助zylt50采纳,获得10
2秒前
syangZ完成签到,获得积分10
3秒前
卷毛完成签到,获得积分10
4秒前
4秒前
4秒前
积极的誉完成签到,获得积分10
5秒前
lixueping发布了新的文献求助10
5秒前
YY完成签到 ,获得积分10
5秒前
慕青应助霹雳蜗牛采纳,获得10
5秒前
思源应助Rian采纳,获得10
6秒前
量子星尘发布了新的文献求助10
7秒前
上官若男应助务实采纳,获得10
7秒前
爱丸发布了新的文献求助10
9秒前
zyb完成签到 ,获得积分10
9秒前
11秒前
11秒前
酷波er应助323采纳,获得10
11秒前
搜集达人应助JLLLLLLLL采纳,获得10
11秒前
12秒前
12秒前
小李完成签到,获得积分10
13秒前
13秒前
15秒前
lab发布了新的文献求助10
16秒前
Rian发布了新的文献求助10
17秒前
yznfly应助wang洁采纳,获得30
17秒前
17秒前
18秒前
娜孜完成签到,获得积分10
18秒前
小在完成签到,获得积分10
19秒前
19秒前
圈圈发布了新的文献求助10
19秒前
量子星尘发布了新的文献求助10
20秒前
20秒前
包容的小蚂蚁完成签到,获得积分10
21秒前
21秒前
领导范儿应助麻喽采纳,获得10
22秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5633372
求助须知:如何正确求助?哪些是违规求助? 4728906
关于积分的说明 14985685
捐赠科研通 4791313
什么是DOI,文献DOI怎么找? 2558863
邀请新用户注册赠送积分活动 1519267
关于科研通互助平台的介绍 1479548