Defect identification method of carbon fiber sucker rod based on GoogLeNet-based deep learning model and transfer learning

材料科学 抽油杆 学习迁移 鉴定(生物学) 纤维 吸盘 复合材料 人工智能 计算机科学 解剖 植物 生物
作者
Chenquan Hua,Siwei Chen,Guoyan Xu,Lu Yang,Baoyu Du
出处
期刊:Materials today communications [Elsevier BV]
卷期号:33: 104228-104228 被引量:3
标识
DOI:10.1016/j.mtcomm.2022.104228
摘要

Carbon fiber sucker rods are widely used in oil production site due to their light weight, high strength and corrosion resistance, but there is still a lack of effective internal defect detection methods during production and installation. Aiming at the characteristics of irregular interface in the sucker rod, a novel defect identification method of carbon fiber sucker rod based on multi-sensor information fusion and GoogLeNet-based deep learning model was proposed to identify online the internal defects of carbon fiber sucker rod. First, the full coverage scan of the sucker rod in the cross-section was performed by a water-immersed ultrasonic array containing 32 probes, and the corresponding ultrasonic reflection signals was obtained. Then, a multi-sensor information fusion method was proposed to integrate amplitude and flight time of received ultrasonic reflection signals with the spatial angle information of each probe into defect images. Time signal waveforms of ultrasonic signals with different defects were mapped into different defect images, so that we can rely on deep learning models in the field of image identification to identify those defects. Finally, A GoogLeNet-based deep learning model were trained to identify the image-based defect of the carbon fiber rod. The transfer learning method, which transferred weights of the pre-trained GoogLeNet model by ImageNet large database to the GoogLeNet-based defect identification model, was adopted to enhance the convergence speed and generalization ability of the model for insufficient training samples. The testing results show that the overall defect identification accuracy of the trained GoogLeNet-based deep learning model was 99.72%, which can identify effectively four typical defects and no defects of carbon fiber sucker rods. • An immersed ultrasonic array detection system was used to scan the cross section of sucker rod. • A multi-sensor information fusion method was proposed to map time signal waveforms into the defect images. • A GoogLeNet-based deep learning model is proposed to identify defect images. • Transfer learning is used to train the model for the small sample.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hanleiharry1发布了新的文献求助10
1秒前
Channing_Ho完成签到 ,获得积分10
1秒前
eric888应助辛勤的诗蕊采纳,获得50
2秒前
2秒前
顺利毕业完成签到,获得积分10
2秒前
3秒前
科研小白完成签到,获得积分10
3秒前
Ava应助甜蜜花采纳,获得10
3秒前
上官若男应助Raza采纳,获得10
3秒前
4秒前
Ava应助眼睛大行云采纳,获得10
4秒前
5秒前
xue完成签到 ,获得积分10
5秒前
健忘丹珍完成签到,获得积分10
5秒前
5秒前
5秒前
坤坤蹦蹦跳跳完成签到,获得积分10
7秒前
害羞映容完成签到,获得积分10
7秒前
科研通AI6应助小亮哈哈采纳,获得10
7秒前
7秒前
7秒前
所所应助liriyii采纳,获得10
7秒前
核糖体完成签到,获得积分20
8秒前
9秒前
Lloignyth完成签到,获得积分10
9秒前
赵苏程完成签到,获得积分10
9秒前
9秒前
9秒前
乐乐应助小张醒了采纳,获得10
10秒前
半凡完成签到,获得积分10
10秒前
小小666完成签到 ,获得积分10
10秒前
幽悠梦儿发布了新的文献求助10
11秒前
11秒前
11秒前
11秒前
Elin完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助10
11秒前
平平无奇发布了新的文献求助10
12秒前
12秒前
青年才俊发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5097313
求助须知:如何正确求助?哪些是违规求助? 4309783
关于积分的说明 13428428
捐赠科研通 4137300
什么是DOI,文献DOI怎么找? 2266533
邀请新用户注册赠送积分活动 1269654
关于科研通互助平台的介绍 1205978