Defect identification method of carbon fiber sucker rod based on GoogLeNet-based deep learning model and transfer learning

材料科学 抽油杆 学习迁移 鉴定(生物学) 纤维 吸盘 复合材料 人工智能 计算机科学 解剖 植物 生物
作者
Chenquan Hua,Siwei Chen,Guoyan Xu,Lu Yang,Baoyu Du
出处
期刊:Materials today communications [Elsevier]
卷期号:33: 104228-104228 被引量:3
标识
DOI:10.1016/j.mtcomm.2022.104228
摘要

Carbon fiber sucker rods are widely used in oil production site due to their light weight, high strength and corrosion resistance, but there is still a lack of effective internal defect detection methods during production and installation. Aiming at the characteristics of irregular interface in the sucker rod, a novel defect identification method of carbon fiber sucker rod based on multi-sensor information fusion and GoogLeNet-based deep learning model was proposed to identify online the internal defects of carbon fiber sucker rod. First, the full coverage scan of the sucker rod in the cross-section was performed by a water-immersed ultrasonic array containing 32 probes, and the corresponding ultrasonic reflection signals was obtained. Then, a multi-sensor information fusion method was proposed to integrate amplitude and flight time of received ultrasonic reflection signals with the spatial angle information of each probe into defect images. Time signal waveforms of ultrasonic signals with different defects were mapped into different defect images, so that we can rely on deep learning models in the field of image identification to identify those defects. Finally, A GoogLeNet-based deep learning model were trained to identify the image-based defect of the carbon fiber rod. The transfer learning method, which transferred weights of the pre-trained GoogLeNet model by ImageNet large database to the GoogLeNet-based defect identification model, was adopted to enhance the convergence speed and generalization ability of the model for insufficient training samples. The testing results show that the overall defect identification accuracy of the trained GoogLeNet-based deep learning model was 99.72%, which can identify effectively four typical defects and no defects of carbon fiber sucker rods. • An immersed ultrasonic array detection system was used to scan the cross section of sucker rod. • A multi-sensor information fusion method was proposed to map time signal waveforms into the defect images. • A GoogLeNet-based deep learning model is proposed to identify defect images. • Transfer learning is used to train the model for the small sample.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
橘子发布了新的文献求助10
1秒前
1秒前
Akim应助溺水的鸭子采纳,获得10
2秒前
keyan发布了新的文献求助20
3秒前
3秒前
胥风发布了新的文献求助10
4秒前
叡叡完成签到,获得积分10
4秒前
激昂的亦竹完成签到 ,获得积分10
5秒前
tengfei完成签到 ,获得积分10
7秒前
7秒前
10秒前
安屿发布了新的文献求助10
10秒前
10秒前
竹筏过海应助专一的傲白采纳,获得30
10秒前
溺水的鸭子完成签到,获得积分10
11秒前
姝飞糊涂发布了新的文献求助10
12秒前
天南完成签到,获得积分10
12秒前
13秒前
14秒前
bukeshuo发布了新的文献求助10
14秒前
15秒前
大个应助嘻嘻采纳,获得10
15秒前
火眼金睛完成签到,获得积分10
16秒前
16秒前
Akim应助苹果不平采纳,获得10
16秒前
体贴半仙完成签到,获得积分10
16秒前
17秒前
18秒前
碧蓝的果汁完成签到,获得积分10
19秒前
柠檬味电子对儿完成签到,获得积分10
21秒前
21秒前
iNk应助可耐的冷松采纳,获得20
21秒前
newbiology完成签到,获得积分10
21秒前
23秒前
yuchao_0110发布了新的文献求助10
23秒前
24秒前
房房房破防啦完成签到,获得积分10
25秒前
英姑应助荔枝多酚采纳,获得10
25秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162844
求助须知:如何正确求助?哪些是违规求助? 2813816
关于积分的说明 7902135
捐赠科研通 2473442
什么是DOI,文献DOI怎么找? 1316849
科研通“疑难数据库(出版商)”最低求助积分说明 631545
版权声明 602187