Defect identification method of carbon fiber sucker rod based on GoogLeNet-based deep learning model and transfer learning

材料科学 抽油杆 学习迁移 鉴定(生物学) 纤维 吸盘 复合材料 人工智能 计算机科学 解剖 植物 生物
作者
Chenquan Hua,Siwei Chen,Guoyan Xu,Lu Yang,Baoyu Du
出处
期刊:Materials today communications [Elsevier BV]
卷期号:33: 104228-104228 被引量:3
标识
DOI:10.1016/j.mtcomm.2022.104228
摘要

Carbon fiber sucker rods are widely used in oil production site due to their light weight, high strength and corrosion resistance, but there is still a lack of effective internal defect detection methods during production and installation. Aiming at the characteristics of irregular interface in the sucker rod, a novel defect identification method of carbon fiber sucker rod based on multi-sensor information fusion and GoogLeNet-based deep learning model was proposed to identify online the internal defects of carbon fiber sucker rod. First, the full coverage scan of the sucker rod in the cross-section was performed by a water-immersed ultrasonic array containing 32 probes, and the corresponding ultrasonic reflection signals was obtained. Then, a multi-sensor information fusion method was proposed to integrate amplitude and flight time of received ultrasonic reflection signals with the spatial angle information of each probe into defect images. Time signal waveforms of ultrasonic signals with different defects were mapped into different defect images, so that we can rely on deep learning models in the field of image identification to identify those defects. Finally, A GoogLeNet-based deep learning model were trained to identify the image-based defect of the carbon fiber rod. The transfer learning method, which transferred weights of the pre-trained GoogLeNet model by ImageNet large database to the GoogLeNet-based defect identification model, was adopted to enhance the convergence speed and generalization ability of the model for insufficient training samples. The testing results show that the overall defect identification accuracy of the trained GoogLeNet-based deep learning model was 99.72%, which can identify effectively four typical defects and no defects of carbon fiber sucker rods. • An immersed ultrasonic array detection system was used to scan the cross section of sucker rod. • A multi-sensor information fusion method was proposed to map time signal waveforms into the defect images. • A GoogLeNet-based deep learning model is proposed to identify defect images. • Transfer learning is used to train the model for the small sample.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
在水一方应助cyn采纳,获得10
刚刚
JamesPei应助暴躁的海豚采纳,获得10
刚刚
onion完成签到,获得积分10
刚刚
即投即中应助camell采纳,获得20
刚刚
czxchase完成签到,获得积分10
1秒前
rattlebox321发布了新的文献求助10
2秒前
心外科医生完成签到,获得积分10
2秒前
3秒前
3秒前
zuo发布了新的文献求助10
4秒前
lzh发布了新的文献求助10
5秒前
fan发布了新的文献求助10
6秒前
青山完成签到,获得积分10
6秒前
神马都不懂完成签到,获得积分10
8秒前
8秒前
欣然发布了新的文献求助10
8秒前
陶征应助有魅力老头采纳,获得10
8秒前
陶征应助有魅力老头采纳,获得10
9秒前
脑洞疼应助有魅力老头采纳,获得10
9秒前
我是老大应助默默的天亦采纳,获得10
9秒前
科目三应助可萌采纳,获得10
9秒前
10秒前
10秒前
11秒前
11秒前
玩命的寄翠完成签到,获得积分10
11秒前
11秒前
Lucifer完成签到 ,获得积分10
12秒前
12秒前
13秒前
科研通AI2S应助橙子采纳,获得10
13秒前
13秒前
在水一方应助wang5945采纳,获得10
13秒前
rattlebox321完成签到,获得积分0
13秒前
14秒前
14秒前
14秒前
orixero应助高兴的冰棍采纳,获得10
14秒前
123发布了新的文献求助10
14秒前
15秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979146
求助须知:如何正确求助?哪些是违规求助? 3523056
关于积分的说明 11215854
捐赠科研通 3260487
什么是DOI,文献DOI怎么找? 1800049
邀请新用户注册赠送积分活动 878813
科研通“疑难数据库(出版商)”最低求助积分说明 807092