Defect identification method of carbon fiber sucker rod based on GoogLeNet-based deep learning model and transfer learning

材料科学 抽油杆 学习迁移 鉴定(生物学) 纤维 吸盘 复合材料 人工智能 计算机科学 解剖 植物 生物
作者
Chenquan Hua,Siwei Chen,Guoyan Xu,Lu Yang,Baoyu Du
出处
期刊:Materials today communications [Elsevier]
卷期号:33: 104228-104228 被引量:3
标识
DOI:10.1016/j.mtcomm.2022.104228
摘要

Carbon fiber sucker rods are widely used in oil production site due to their light weight, high strength and corrosion resistance, but there is still a lack of effective internal defect detection methods during production and installation. Aiming at the characteristics of irregular interface in the sucker rod, a novel defect identification method of carbon fiber sucker rod based on multi-sensor information fusion and GoogLeNet-based deep learning model was proposed to identify online the internal defects of carbon fiber sucker rod. First, the full coverage scan of the sucker rod in the cross-section was performed by a water-immersed ultrasonic array containing 32 probes, and the corresponding ultrasonic reflection signals was obtained. Then, a multi-sensor information fusion method was proposed to integrate amplitude and flight time of received ultrasonic reflection signals with the spatial angle information of each probe into defect images. Time signal waveforms of ultrasonic signals with different defects were mapped into different defect images, so that we can rely on deep learning models in the field of image identification to identify those defects. Finally, A GoogLeNet-based deep learning model were trained to identify the image-based defect of the carbon fiber rod. The transfer learning method, which transferred weights of the pre-trained GoogLeNet model by ImageNet large database to the GoogLeNet-based defect identification model, was adopted to enhance the convergence speed and generalization ability of the model for insufficient training samples. The testing results show that the overall defect identification accuracy of the trained GoogLeNet-based deep learning model was 99.72%, which can identify effectively four typical defects and no defects of carbon fiber sucker rods. • An immersed ultrasonic array detection system was used to scan the cross section of sucker rod. • A multi-sensor information fusion method was proposed to map time signal waveforms into the defect images. • A GoogLeNet-based deep learning model is proposed to identify defect images. • Transfer learning is used to train the model for the small sample.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
老迟到的书雁完成签到 ,获得积分10
刚刚
刚刚
正经俠发布了新的文献求助10
1秒前
1秒前
2秒前
2秒前
学科共进完成签到,获得积分10
3秒前
百草27完成签到,获得积分10
3秒前
4秒前
5秒前
6秒前
绵马紫萁发布了新的文献求助10
6秒前
7秒前
fzhou完成签到 ,获得积分10
7秒前
尘雾发布了新的文献求助10
7秒前
8秒前
一一发布了新的文献求助20
8秒前
8秒前
Aixia完成签到 ,获得积分10
9秒前
葡萄糖完成签到,获得积分10
9秒前
哈哈完成签到,获得积分10
9秒前
在水一方应助CC采纳,获得10
9秒前
9秒前
余笙完成签到 ,获得积分10
10秒前
神勇的雅香应助科研混子采纳,获得10
10秒前
TT发布了新的文献求助10
11秒前
李顺完成签到,获得积分20
12秒前
ayin发布了新的文献求助10
12秒前
wait发布了新的文献求助10
12秒前
我是站长才怪应助xg采纳,获得10
13秒前
童话艺术佳完成签到,获得积分10
13秒前
稀罕你完成签到,获得积分10
13秒前
junzilan发布了新的文献求助10
13秒前
anny.white完成签到,获得积分10
14秒前
科研通AI5应助平常的毛豆采纳,获得10
16秒前
SciGPT应助paul采纳,获得10
19秒前
21秒前
英姑应助书生采纳,获得10
22秒前
科研钓鱼佬完成签到,获得积分10
23秒前
25秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824