A Forecast of Geohazard and Factors Influencing Geohazard Using Transfer Learning

地质灾害 地质学 计算机科学 地理 岩土工程 山崩
作者
S. Visalaxi,T. Sudalaimuthu,Tanupriya Choudhury,A. Rohini
出处
期刊:Lecture notes on data engineering and communications technologies 卷期号:: 469-479
标识
DOI:10.1007/978-981-19-2347-0_37
摘要

Geohazard is an ecological destruction problem that exists in various parts of the universe. Geohazard destroys the complete ecosystem. Geohazard results in both human and economic loss. In India, these Geohazards create an impact of 2% of loss in domestic products and 12% of economic loss. In the advancement of technology at various eras, various methodologies were implemented to predict the Geohazard. The approaches start include (a) Steel sheets technique (b) Installation of sensors (Fiber optic and Electrical Sensor) in expected place (c) Machine learning models (d) Time series analysis (e) Basic neural network structure, etc. The problem faced by conventional approaches are (a) large volume of data, (b) Satellite image-based data (c) Radar covers a small area, etc. Deep learning is the cutting-edge technology that addresses the problems faced by the traditional approaches in effectively. The usage of architectures in deep learning provides the solution for Geohazard. The proposed work implements a novel approach “Transfer learning approaches for effective prediction along with factors influencing Geohazard”. VGG16 is a state-of-art technique for predicting the images more precisely with an accuracy of 80% in recognizing the occurrence of Geohazard. The various factors that influence the Geohazard are identified using Correlation mapping.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
shengjian86发布了新的文献求助10
1秒前
NorthWang发布了新的文献求助30
1秒前
积极天思完成签到 ,获得积分10
2秒前
无奈的老姆完成签到,获得积分10
2秒前
hana发布了新的文献求助10
3秒前
3秒前
科研通AI5应助忐忑的尔容采纳,获得10
3秒前
陈情发布了新的文献求助10
3秒前
rajvsvj完成签到,获得积分10
4秒前
morning发布了新的文献求助10
4秒前
4秒前
三石完成签到 ,获得积分10
5秒前
hilton发布了新的文献求助10
5秒前
5秒前
yang关注了科研通微信公众号
5秒前
ayj完成签到,获得积分20
5秒前
复杂书竹发布了新的文献求助10
7秒前
7秒前
吃猫的鱼发布了新的文献求助10
7秒前
852应助芒果豆豆采纳,获得10
7秒前
王铁柱完成签到,获得积分10
8秒前
Jankim完成签到,获得积分10
8秒前
kk完成签到,获得积分10
9秒前
李牛牛完成签到 ,获得积分10
9秒前
传奇3应助HHHH采纳,获得10
9秒前
liushuai发布了新的文献求助10
9秒前
9秒前
整齐道天发布了新的文献求助10
10秒前
orixero应助抗体药物偶联采纳,获得10
10秒前
11秒前
11秒前
科研通AI5应助z1z1z采纳,获得10
11秒前
搞怪静曼发布了新的文献求助10
11秒前
Yunpeng Cai发布了新的文献求助10
11秒前
hljhhh完成签到,获得积分10
12秒前
佳语妍说完成签到,获得积分10
12秒前
12秒前
玉暖洋洋完成签到,获得积分10
12秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Conference Record, IAS Annual Meeting 1977 1250
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3653134
求助须知:如何正确求助?哪些是违规求助? 3217096
关于积分的说明 9715730
捐赠科研通 2924955
什么是DOI,文献DOI怎么找? 1601971
邀请新用户注册赠送积分活动 754750
科研通“疑难数据库(出版商)”最低求助积分说明 733209