亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Forecast of Geohazard and Factors Influencing Geohazard Using Transfer Learning

地质灾害 地质学 计算机科学 地理 岩土工程 山崩
作者
S. Visalaxi,T. Sudalaimuthu,Tanupriya Choudhury,A. Rohini
出处
期刊:Lecture notes on data engineering and communications technologies 卷期号:: 469-479
标识
DOI:10.1007/978-981-19-2347-0_37
摘要

Geohazard is an ecological destruction problem that exists in various parts of the universe. Geohazard destroys the complete ecosystem. Geohazard results in both human and economic loss. In India, these Geohazards create an impact of 2% of loss in domestic products and 12% of economic loss. In the advancement of technology at various eras, various methodologies were implemented to predict the Geohazard. The approaches start include (a) Steel sheets technique (b) Installation of sensors (Fiber optic and Electrical Sensor) in expected place (c) Machine learning models (d) Time series analysis (e) Basic neural network structure, etc. The problem faced by conventional approaches are (a) large volume of data, (b) Satellite image-based data (c) Radar covers a small area, etc. Deep learning is the cutting-edge technology that addresses the problems faced by the traditional approaches in effectively. The usage of architectures in deep learning provides the solution for Geohazard. The proposed work implements a novel approach “Transfer learning approaches for effective prediction along with factors influencing Geohazard”. VGG16 is a state-of-art technique for predicting the images more precisely with an accuracy of 80% in recognizing the occurrence of Geohazard. The various factors that influence the Geohazard are identified using Correlation mapping.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
吗喽完成签到,获得积分10
1秒前
含蓄薯片完成签到 ,获得积分10
1秒前
善学以致用应助felix采纳,获得10
2秒前
Jasper应助felix采纳,获得10
2秒前
星辰大海应助felix采纳,获得10
2秒前
李健的小迷弟应助felix采纳,获得10
2秒前
NexusExplorer应助felix采纳,获得10
2秒前
NexusExplorer应助felix采纳,获得10
2秒前
Wish完成签到,获得积分10
4秒前
隐形曼青应助十六采纳,获得10
4秒前
feifei0729发布了新的文献求助10
8秒前
9秒前
9秒前
Li完成签到,获得积分20
13秒前
ding应助sadascaqwqw采纳,获得10
15秒前
18秒前
peeer完成签到,获得积分10
19秒前
20秒前
kki发布了新的文献求助10
22秒前
22秒前
大龙哥886应助VDC采纳,获得10
23秒前
CipherSage应助ilovelr采纳,获得30
25秒前
26秒前
无辜绿竹发布了新的文献求助10
26秒前
minhdh完成签到,获得积分10
35秒前
simey发布了新的文献求助10
36秒前
南宫初柒完成签到 ,获得积分10
36秒前
37秒前
凌洛尘完成签到 ,获得积分10
39秒前
非泥完成签到,获得积分10
42秒前
陈龙完成签到,获得积分10
44秒前
nc完成签到 ,获得积分10
46秒前
46秒前
wsy完成签到,获得积分10
49秒前
49秒前
傲骨完成签到 ,获得积分10
51秒前
wsy发布了新的文献求助30
52秒前
52秒前
__星星月亮太阳完成签到,获得积分10
53秒前
科研通AI6应助kei采纳,获得10
55秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5590314
求助须知:如何正确求助?哪些是违规求助? 4674693
关于积分的说明 14795069
捐赠科研通 4631138
什么是DOI,文献DOI怎么找? 2532671
邀请新用户注册赠送积分活动 1501268
关于科研通互助平台的介绍 1468599