Optimization of the Wastewater Treatment Plant Aeration Using Artificial Neural Networks Models

人工神经网络 均方误差 曝气 计算 工程类 网络拓扑 计算机科学 数学 人工智能 统计 算法 废物管理 操作系统
作者
Norbert-Botond Mihály,Mircea Vasile Cristea
出处
期刊:Computer-aided chemical engineering 卷期号:: 1375-1380 被引量:3
标识
DOI:10.1016/b978-0-323-95879-0.50230-7
摘要

The present work aimed the modelling and optimization of the Wastewater Treatment Plant (WWTP) operation based on predicting its energy and quality performance indices using Artificial Neural Networks (ANNs). The best model architecture and structure were searched among three different ANN types, with different topologies. A standard dataset originating from the plant calibrated first-principle model (FPM) data was used to develop the ANN models. Their performance was evaluated by the coefficient of determination and mean squared error (MSE) values, first at testing and subsequently at the prediction performed for a new input dataset. Using the most promising identified ANN types and topologies, two ANN structures were investigated, one with three single output neural networks and another one with a single network with three outputs for predicting WWTP performance indices: aeration energy, effluent quality and pumping energy. The analytical model and the two ANN structures were used in the study of the aeration optimization of the WWTP, for finding the optimal air distribution in the aerated reactors. The obtained results were tested and compared taking into account the performance index values as well as the required computation time. The developed ANN models showed similar results to the FPM in terms of performance indices, while the required computation time was reduced by several orders of magnitude.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
在水一方应助科研通管家采纳,获得10
刚刚
李健应助科研通管家采纳,获得10
刚刚
Jasper应助科研通管家采纳,获得10
刚刚
丘比特应助科研通管家采纳,获得10
刚刚
无花果应助科研通管家采纳,获得10
刚刚
阚曦完成签到,获得积分10
2秒前
2秒前
5秒前
葛灵竹完成签到 ,获得积分10
7秒前
重要的天空完成签到 ,获得积分20
7秒前
搜集达人应助ABCD采纳,获得10
8秒前
威武冷雪发布了新的文献求助10
9秒前
平平平平完成签到 ,获得积分10
11秒前
彭于晏应助邾佳采纳,获得10
11秒前
贾世冰发布了新的文献求助30
15秒前
19秒前
叶子宁完成签到,获得积分10
20秒前
迷路海蓝完成签到,获得积分10
20秒前
威武冷雪完成签到,获得积分10
22秒前
zhw完成签到,获得积分10
23秒前
25秒前
蒙蒙完成签到 ,获得积分10
26秒前
bkagyin应助爱科研的TOM采纳,获得10
27秒前
Puokn发布了新的文献求助10
28秒前
cl完成签到,获得积分10
28秒前
斯文败类应助贾世冰采纳,获得10
29秒前
29秒前
30秒前
加菲丰丰举报Tomice求助涉嫌违规
31秒前
Macro完成签到 ,获得积分10
31秒前
31秒前
缓慢海亦完成签到,获得积分20
32秒前
苯妥英俊完成签到,获得积分10
32秒前
缓慢海亦发布了新的文献求助10
35秒前
36秒前
shuyu完成签到 ,获得积分10
37秒前
加菲丰丰举报Dingyiren求助涉嫌违规
38秒前
帅冰冰冰完成签到,获得积分10
39秒前
42秒前
43秒前
高分求助中
Evolution 10000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3164253
求助须知:如何正确求助?哪些是违规求助? 2814960
关于积分的说明 7907257
捐赠科研通 2474588
什么是DOI,文献DOI怎么找? 1317573
科研通“疑难数据库(出版商)”最低求助积分说明 631857
版权声明 602228