亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Privacy-Preserving Federated Learning With Malicious Clients and Honest-but-Curious Servers

服务器 计算机科学 计算机安全 差别隐私 信息隐私 方案(数学) 联合学习 隐私保护 互联网隐私 计算机网络 人工智能 数据挖掘 数学分析 数学
作者
Junqing Le,Di Zhang,Xinyu Lei,Long Jiao,Kai Zeng,Xiaofeng Liao
出处
期刊:IEEE Transactions on Information Forensics and Security [Institute of Electrical and Electronics Engineers]
卷期号:18: 4329-4344 被引量:20
标识
DOI:10.1109/tifs.2023.3295949
摘要

Federated learning (FL) enables multiple clients to jointly train a global learning model while keeping their training data locally, thereby protecting clients’ privacy. However, there still exist some security issues in FL, e.g., the honest-but-curious servers may mine privacy from clients’ model updates, and the malicious clients may launch poisoning attacks to disturb or break global model training. Moreover, most previous works focus on the security issues of FL in the presence of only honest-but-curious servers or only malicious clients. In this paper, we consider a stronger and more practical threat model in FL, where the honest-but-curious servers and malicious clients coexist, named as the non-fully trusted model. In the non-fully trusted FL, privacy protection schemes for honest-but-curious servers are executed to ensure that all model updates are indistinguishable, which makes malicious model updates difficult to detect. Toward this end, we present an Adaptive Privacy-Preserving FL (Ada-PPFL) scheme with Differential Privacy (DP) as the underlying technology, to simultaneously protect clients’ privacy and eliminate the adverse effects of malicious clients on model training. Specifically, we propose an adaptive DP strategy to achieve strong client-level privacy protection while minimizing the impact on the prediction accuracy of the global model. In addition, we introduce DPAD, an algorithm specifically designed to precisely detect malicious model updates, even in cases where the updates are protected by DP measures. Finally, the theoretical analysis and experimental results further illustrate that the proposed Ada-PPFL enables client-level privacy protection with 35% DP-noise savings, and maintains similar prediction accuracy to models without malicious attacks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Orange应助朴素千愁采纳,获得20
4秒前
清脆大米发布了新的文献求助10
6秒前
英俊的铭应助lily采纳,获得10
13秒前
Viva应助ying采纳,获得20
19秒前
善学以致用应助清脆大米采纳,获得10
22秒前
23秒前
Vce April完成签到,获得积分10
24秒前
研友_VZG7GZ应助ajianq采纳,获得10
25秒前
32秒前
33秒前
35秒前
ajianq发布了新的文献求助10
37秒前
lily发布了新的文献求助10
38秒前
Perry完成签到,获得积分10
38秒前
Anthocyanidin完成签到,获得积分10
46秒前
lily完成签到,获得积分10
47秒前
Owen应助科研通管家采纳,获得10
49秒前
完美的海完成签到 ,获得积分0
1分钟前
Demi发布了新的文献求助20
1分钟前
jyy完成签到,获得积分10
1分钟前
1分钟前
朴素千愁发布了新的文献求助20
1分钟前
1分钟前
1分钟前
1分钟前
雪中发布了新的文献求助30
1分钟前
清脆大米发布了新的文献求助10
1分钟前
斯文败类应助kante采纳,获得10
1分钟前
无花果应助天大青年采纳,获得10
1分钟前
1分钟前
甜甜圆圆完成签到,获得积分10
1分钟前
1分钟前
1分钟前
kante发布了新的文献求助10
1分钟前
cille发布了新的文献求助10
1分钟前
嘟嘟发布了新的文献求助10
1分钟前
ShowMaker给学习的苹果的求助进行了留言
2分钟前
思源应助田柾国采纳,获得10
2分钟前
桐桐应助清风浮云采纳,获得10
2分钟前
2分钟前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3150492
求助须知:如何正确求助?哪些是违规求助? 2801881
关于积分的说明 7845881
捐赠科研通 2459245
什么是DOI,文献DOI怎么找? 1309130
科研通“疑难数据库(出版商)”最低求助积分说明 628656
版权声明 601727