Fractal dimension: analyzing its potential as a neuroimaging biomarker for brain tumor diagnosis using machine learning

胶质瘤 医学 脑瘤 接收机工作特性 磁共振成像 白质 神经影像学 人工智能 相关性 核医学 曲线下面积 放射科 数学 病理 内科学 计算机科学 几何学 癌症研究 精神科
作者
Dheerendranath Battalapalli,Sreejith Vidyadharan,B. V. V. S. N. Prabhakar Rao,Perumal Yogeeswari,Chandrasekharan Kesavadas,Venkateswaran Rajagopalan
出处
期刊:Frontiers in Physiology [Frontiers Media SA]
卷期号:14 被引量:15
标识
DOI:10.3389/fphys.2023.1201617
摘要

Purpose: The main purpose of this study was to comprehensively investigate the potential of fractal dimension (FD) measures in discriminating brain gliomas into low-grade glioma (LGG) and high-grade glioma (HGG) by examining tumor constituents and non-tumorous gray matter (GM) and white matter (WM) regions. Methods: Retrospective magnetic resonance imaging (MRI) data of 42 glioma patients (LGG, n = 27 and HGG, n = 15) were used in this study. Using MRI, we calculated different FD measures based on the general structure, boundary, and skeleton aspects of the tumorous and non-tumorous brain GM and WM regions. Texture features, namely, angular second moment, contrast, inverse difference moment, correlation, and entropy, were also measured in the tumorous and non-tumorous regions. The efficacy of FD features was assessed by comparing them with texture features. Statistical inference and machine learning approaches were used on the aforementioned measures to distinguish LGG and HGG patients. Results: FD measures from tumorous and non-tumorous regions were able to distinguish LGG and HGG patients. Among the 15 different FD measures, the general structure FD values of enhanced tumor regions yielded high accuracy (93%), sensitivity (97%), specificity (98%), and area under the receiver operating characteristic curve (AUC) score (98%). Non-tumorous GM skeleton FD values also yielded good accuracy (83.3%), sensitivity (100%), specificity (60%), and AUC score (80%) in classifying the tumor grades. These measures were also found to be significantly (p < 0.05) different between LGG and HGG patients. On the other hand, among the 25 texture features, enhanced tumor region features, namely, contrast, correlation, and entropy, revealed significant differences between LGG and HGG. In machine learning, the enhanced tumor region texture features yielded high accuracy, sensitivity, specificity, and AUC score. Conclusion: A comparison between texture and FD features revealed that FD analysis on different aspects of the tumorous and non-tumorous components not only distinguished LGG and HGG patients with high statistical significance and classification accuracy but also provided better insights into glioma grade classification. Therefore, FD features can serve as potential neuroimaging biomarkers for glioma.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
挺好0325发布了新的文献求助10
2秒前
向天歌发布了新的文献求助10
3秒前
adgn完成签到,获得积分10
3秒前
4秒前
xizhoulls发布了新的文献求助10
4秒前
6秒前
zho发布了新的文献求助10
6秒前
大翟发布了新的文献求助10
7秒前
快乐慕灵完成签到,获得积分10
7秒前
叮叮车完成签到 ,获得积分10
8秒前
chenlingzhou完成签到,获得积分10
11秒前
11秒前
李爱国应助向天歌采纳,获得10
12秒前
12秒前
13秒前
hhh发布了新的文献求助10
16秒前
1226发布了新的文献求助10
17秒前
zh完成签到 ,获得积分10
19秒前
zjj完成签到,获得积分10
26秒前
谦让语兰完成签到,获得积分10
26秒前
linkin完成签到 ,获得积分10
29秒前
30秒前
33秒前
Orange应助大翟采纳,获得10
33秒前
雪儿完成签到 ,获得积分10
34秒前
大锤哥完成签到,获得积分10
34秒前
张先伟完成签到,获得积分10
34秒前
36秒前
科研通AI2S应助carol采纳,获得10
37秒前
38秒前
万元帅完成签到 ,获得积分10
38秒前
pluto完成签到,获得积分0
39秒前
梁超发布了新的文献求助10
39秒前
44秒前
大模型应助北雁采纳,获得10
47秒前
烂漫的静枫完成签到,获得积分10
47秒前
47秒前
大模型应助胤嘉采纳,获得10
48秒前
嗯哼应助Lucifer采纳,获得10
49秒前
哈哈哈发布了新的文献求助30
49秒前
高分求助中
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
Mantodea of the World: Species Catalog Andrew M 500
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3464176
求助须知:如何正确求助?哪些是违规求助? 3057496
关于积分的说明 9057440
捐赠科研通 2747573
什么是DOI,文献DOI怎么找? 1507413
科研通“疑难数据库(出版商)”最低求助积分说明 696553
邀请新用户注册赠送积分活动 696068