Fractal dimension: analyzing its potential as a neuroimaging biomarker for brain tumor diagnosis using machine learning

胶质瘤 医学 脑瘤 接收机工作特性 磁共振成像 白质 神经影像学 人工智能 相关性 核医学 曲线下面积 放射科 数学 病理 内科学 计算机科学 精神科 癌症研究 几何学
作者
Dheerendranath Battalapalli,Sreejith Vidyadharan,B. V. V. S. N. Prabhakar Rao,Perumal Yogeeswari,Chandrasekharan Kesavadas,Venkateswaran Rajagopalan
出处
期刊:Frontiers in Physiology [Frontiers Media SA]
卷期号:14 被引量:15
标识
DOI:10.3389/fphys.2023.1201617
摘要

Purpose: The main purpose of this study was to comprehensively investigate the potential of fractal dimension (FD) measures in discriminating brain gliomas into low-grade glioma (LGG) and high-grade glioma (HGG) by examining tumor constituents and non-tumorous gray matter (GM) and white matter (WM) regions. Methods: Retrospective magnetic resonance imaging (MRI) data of 42 glioma patients (LGG, n = 27 and HGG, n = 15) were used in this study. Using MRI, we calculated different FD measures based on the general structure, boundary, and skeleton aspects of the tumorous and non-tumorous brain GM and WM regions. Texture features, namely, angular second moment, contrast, inverse difference moment, correlation, and entropy, were also measured in the tumorous and non-tumorous regions. The efficacy of FD features was assessed by comparing them with texture features. Statistical inference and machine learning approaches were used on the aforementioned measures to distinguish LGG and HGG patients. Results: FD measures from tumorous and non-tumorous regions were able to distinguish LGG and HGG patients. Among the 15 different FD measures, the general structure FD values of enhanced tumor regions yielded high accuracy (93%), sensitivity (97%), specificity (98%), and area under the receiver operating characteristic curve (AUC) score (98%). Non-tumorous GM skeleton FD values also yielded good accuracy (83.3%), sensitivity (100%), specificity (60%), and AUC score (80%) in classifying the tumor grades. These measures were also found to be significantly (p < 0.05) different between LGG and HGG patients. On the other hand, among the 25 texture features, enhanced tumor region features, namely, contrast, correlation, and entropy, revealed significant differences between LGG and HGG. In machine learning, the enhanced tumor region texture features yielded high accuracy, sensitivity, specificity, and AUC score. Conclusion: A comparison between texture and FD features revealed that FD analysis on different aspects of the tumorous and non-tumorous components not only distinguished LGG and HGG patients with high statistical significance and classification accuracy but also provided better insights into glioma grade classification. Therefore, FD features can serve as potential neuroimaging biomarkers for glioma.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
俊逸的问兰完成签到,获得积分10
1秒前
1秒前
酷波er应助Arhtur采纳,获得10
1秒前
可爱的函函应助银鱼在游采纳,获得10
1秒前
songshu驳回了123应助
1秒前
982289172完成签到,获得积分10
1秒前
称心的以蕊完成签到,获得积分10
2秒前
洁净半梦发布了新的文献求助10
2秒前
优秀的雨筠完成签到 ,获得积分10
2秒前
李健应助家秋白采纳,获得10
2秒前
2秒前
czp完成签到,获得积分10
2秒前
wsg发布了新的文献求助10
2秒前
2秒前
夕夕成玦完成签到 ,获得积分10
3秒前
3秒前
开心元霜发布了新的文献求助20
3秒前
吕小软完成签到,获得积分10
3秒前
活力半蕾发布了新的文献求助10
3秒前
先流浪完成签到 ,获得积分10
3秒前
小溪发布了新的文献求助10
3秒前
3秒前
香蕉觅云应助no采纳,获得10
4秒前
4秒前
佐小叶完成签到 ,获得积分10
4秒前
儒雅鞋子完成签到,获得积分10
4秒前
4秒前
秋子david完成签到,获得积分10
5秒前
思源应助科研通管家采纳,获得10
5秒前
5秒前
生动的战斗机完成签到,获得积分10
5秒前
eric888应助科研通管家采纳,获得100
5秒前
lu发布了新的文献求助10
5秒前
5秒前
浪子应助科研通管家采纳,获得10
5秒前
小蘑菇应助科研通管家采纳,获得10
5秒前
烟花应助科研通管家采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5645714
求助须知:如何正确求助?哪些是违规求助? 4769624
关于积分的说明 15031726
捐赠科研通 4804481
什么是DOI,文献DOI怎么找? 2569019
邀请新用户注册赠送积分活动 1526095
关于科研通互助平台的介绍 1485700