Fractal dimension: analyzing its potential as a neuroimaging biomarker for brain tumor diagnosis using machine learning

胶质瘤 医学 脑瘤 接收机工作特性 磁共振成像 白质 神经影像学 人工智能 相关性 核医学 曲线下面积 放射科 数学 病理 内科学 计算机科学 精神科 癌症研究 几何学
作者
Dheerendranath Battalapalli,Sreejith Vidyadharan,B. V. V. S. N. Prabhakar Rao,Perumal Yogeeswari,Chandrasekharan Kesavadas,Venkateswaran Rajagopalan
出处
期刊:Frontiers in Physiology [Frontiers Media]
卷期号:14 被引量:15
标识
DOI:10.3389/fphys.2023.1201617
摘要

Purpose: The main purpose of this study was to comprehensively investigate the potential of fractal dimension (FD) measures in discriminating brain gliomas into low-grade glioma (LGG) and high-grade glioma (HGG) by examining tumor constituents and non-tumorous gray matter (GM) and white matter (WM) regions. Methods: Retrospective magnetic resonance imaging (MRI) data of 42 glioma patients (LGG, n = 27 and HGG, n = 15) were used in this study. Using MRI, we calculated different FD measures based on the general structure, boundary, and skeleton aspects of the tumorous and non-tumorous brain GM and WM regions. Texture features, namely, angular second moment, contrast, inverse difference moment, correlation, and entropy, were also measured in the tumorous and non-tumorous regions. The efficacy of FD features was assessed by comparing them with texture features. Statistical inference and machine learning approaches were used on the aforementioned measures to distinguish LGG and HGG patients. Results: FD measures from tumorous and non-tumorous regions were able to distinguish LGG and HGG patients. Among the 15 different FD measures, the general structure FD values of enhanced tumor regions yielded high accuracy (93%), sensitivity (97%), specificity (98%), and area under the receiver operating characteristic curve (AUC) score (98%). Non-tumorous GM skeleton FD values also yielded good accuracy (83.3%), sensitivity (100%), specificity (60%), and AUC score (80%) in classifying the tumor grades. These measures were also found to be significantly (p < 0.05) different between LGG and HGG patients. On the other hand, among the 25 texture features, enhanced tumor region features, namely, contrast, correlation, and entropy, revealed significant differences between LGG and HGG. In machine learning, the enhanced tumor region texture features yielded high accuracy, sensitivity, specificity, and AUC score. Conclusion: A comparison between texture and FD features revealed that FD analysis on different aspects of the tumorous and non-tumorous components not only distinguished LGG and HGG patients with high statistical significance and classification accuracy but also provided better insights into glioma grade classification. Therefore, FD features can serve as potential neuroimaging biomarkers for glioma.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
123发布了新的文献求助10
刚刚
3秒前
朵朵完成签到,获得积分10
5秒前
发呆的小号完成签到 ,获得积分10
5秒前
充电宝应助原本采纳,获得10
7秒前
山260完成签到 ,获得积分10
7秒前
badada完成签到,获得积分10
7秒前
田様应助科研通管家采纳,获得10
9秒前
大模型应助科研通管家采纳,获得10
9秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
伶俐乐菱应助科研通管家采纳,获得10
10秒前
10秒前
10秒前
10秒前
shadow完成签到,获得积分10
11秒前
sen123完成签到,获得积分10
12秒前
123完成签到,获得积分20
13秒前
14秒前
NATURECATCHER完成签到,获得积分10
14秒前
温暖霸完成签到,获得积分10
14秒前
以筱完成签到,获得积分10
15秒前
NexusExplorer应助崔崔采纳,获得10
15秒前
CipherSage应助Passskd采纳,获得10
19秒前
20秒前
子睿完成签到,获得积分10
20秒前
背后雨柏完成签到 ,获得积分10
20秒前
21秒前
nanana发布了新的文献求助10
22秒前
量子星尘发布了新的文献求助10
22秒前
五月初夏完成签到,获得积分10
22秒前
hannah发布了新的文献求助10
25秒前
songvv完成签到,获得积分20
26秒前
哟哟哟完成签到,获得积分10
27秒前
27秒前
wanglejia完成签到,获得积分10
27秒前
从容的雪碧完成签到,获得积分10
27秒前
28秒前
Ac完成签到,获得积分10
28秒前
谦让的莆完成签到 ,获得积分10
28秒前
胡图图完成签到,获得积分0
28秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038235
求助须知:如何正确求助?哪些是违规求助? 3575992
关于积分的说明 11374009
捐赠科研通 3305760
什么是DOI,文献DOI怎么找? 1819276
邀请新用户注册赠送积分活动 892662
科研通“疑难数据库(出版商)”最低求助积分说明 815022