Partial multi-label learning via three-way decision-based tri-training

计算机科学 分类器(UML) 人工智能 机器学习 基本事实 训练集 数据挖掘 模式识别(心理学)
作者
Wei Qian,Y. Tu,Qian Jin,Wenhao Shu
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:276: 110743-110743
标识
DOI:10.1016/j.knosys.2023.110743
摘要

In real-world application scenarios, multi-label learning (MLL) datasets often contain some irrelevant noisy labels, which degrades the performance of traditional multi-label learning models. In order to deal with this problem, partial multi-label learning (PML) is proposed, in which each instance is associated with a candidate label set, which includes multiple relevant ground-truth labels and some irrelevant noisy labels. The common strategy to deal with this problem is disambiguating the candidate label set, but the co-occurrence of noisy labels and ground-truth labels makes the disambiguation technique susceptible to error. In this paper, a novel disambiguation-free PML approach named PML-TT is proposed. Specifically, by adapting the tri-training framework, mutual cooperation and iteration between classifiers are used to correct noisy labels and improve the performance of the learning model. Moreover, the three-way decision is adapted to solve the conflict problem of the base classifier and obtain more useful training samples. In addition, the precise supervisory information of the non-candidate labels is exploited to make the predictions of the base classifier more accurate. Finally, experimental results on both synthetic and real-world PML datasets show that the proposed PML-TT approach can effectively reduce the negative influence of noisy labels and learn a robust model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
camera完成签到 ,获得积分20
刚刚
zino发布了新的文献求助10
刚刚
reck发布了新的文献求助10
1秒前
1秒前
苹果追命完成签到,获得积分20
2秒前
2秒前
烟花应助8564523采纳,获得10
2秒前
lkl完成签到 ,获得积分10
2秒前
01259发布了新的文献求助10
3秒前
3秒前
金子完成签到,获得积分10
3秒前
阳光下的星星完成签到,获得积分10
3秒前
顾己发布了新的文献求助10
3秒前
搁浅发布了新的文献求助10
3秒前
大桶水果茶完成签到,获得积分10
3秒前
闪闪飞机发布了新的文献求助10
4秒前
打打应助蔡蔡不菜菜采纳,获得10
4秒前
艺玲发布了新的文献求助10
4秒前
5秒前
坚果发布了新的文献求助10
5秒前
宋嬴一发布了新的文献求助10
5秒前
sweetbearm应助丞诺采纳,获得10
5秒前
5秒前
情怀应助缥缈的碧萱采纳,获得10
5秒前
一株多肉完成签到,获得积分10
6秒前
柯柯完成签到,获得积分10
6秒前
是赤赤呀完成签到,获得积分10
6秒前
阮人雄完成签到,获得积分10
6秒前
王饱饱完成签到 ,获得积分10
6秒前
Mr_Hao完成签到,获得积分10
7秒前
Keira_Chang完成签到,获得积分10
7秒前
起承转合完成签到 ,获得积分10
7秒前
风姿物语完成签到,获得积分10
8秒前
xiaopeng完成签到,获得积分10
8秒前
Jenny应助艺玲采纳,获得10
9秒前
一平发布了新的文献求助80
9秒前
樱桃味的火苗完成签到,获得积分10
9秒前
9秒前
波波完成签到,获得积分10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672