Partial multi-label learning via three-way decision-based tri-training

计算机科学 分类器(UML) 人工智能 机器学习 基本事实 训练集 数据挖掘 模式识别(心理学)
作者
Wei Qian,Y. Tu,Qian Jin,Wenhao Shu
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:276: 110743-110743
标识
DOI:10.1016/j.knosys.2023.110743
摘要

In real-world application scenarios, multi-label learning (MLL) datasets often contain some irrelevant noisy labels, which degrades the performance of traditional multi-label learning models. In order to deal with this problem, partial multi-label learning (PML) is proposed, in which each instance is associated with a candidate label set, which includes multiple relevant ground-truth labels and some irrelevant noisy labels. The common strategy to deal with this problem is disambiguating the candidate label set, but the co-occurrence of noisy labels and ground-truth labels makes the disambiguation technique susceptible to error. In this paper, a novel disambiguation-free PML approach named PML-TT is proposed. Specifically, by adapting the tri-training framework, mutual cooperation and iteration between classifiers are used to correct noisy labels and improve the performance of the learning model. Moreover, the three-way decision is adapted to solve the conflict problem of the base classifier and obtain more useful training samples. In addition, the precise supervisory information of the non-candidate labels is exploited to make the predictions of the base classifier more accurate. Finally, experimental results on both synthetic and real-world PML datasets show that the proposed PML-TT approach can effectively reduce the negative influence of noisy labels and learn a robust model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
英俊的铭应助YANGJIE6采纳,获得10
刚刚
斯文败类应助gg采纳,获得10
刚刚
朴顿发布了新的文献求助10
1秒前
shenmo18发布了新的文献求助10
1秒前
lemon发布了新的文献求助10
1秒前
啊哈第一式完成签到,获得积分10
3秒前
3秒前
vivi完成签到,获得积分10
3秒前
诚心的橘子完成签到 ,获得积分10
3秒前
Owen应助刘云采纳,获得10
5秒前
taoeric发布了新的文献求助200
6秒前
科研通AI2S应助romio采纳,获得10
6秒前
史迪仔崽发布了新的文献求助10
8秒前
Akim应助背后的又蓝采纳,获得10
8秒前
金华完成签到,获得积分10
10秒前
LLL完成签到,获得积分20
10秒前
lizhen发布了新的文献求助10
10秒前
希望天下0贩的0应助朴顿采纳,获得10
11秒前
11秒前
嗯哼举报ma求助涉嫌违规
12秒前
头上有犄角bb完成签到 ,获得积分10
12秒前
14秒前
15秒前
LLL发布了新的文献求助10
17秒前
gg发布了新的文献求助10
17秒前
shenmo18发布了新的文献求助10
18秒前
橙子完成签到 ,获得积分10
19秒前
muyassar发布了新的文献求助10
19秒前
小灰灰应助加菲丰丰采纳,获得10
27秒前
28秒前
29秒前
29秒前
yan完成签到,获得积分10
30秒前
枝枝江完成签到,获得积分10
30秒前
30秒前
热心市民小红花应助gg采纳,获得10
30秒前
刘云发布了新的文献求助10
33秒前
xddll发布了新的文献求助10
33秒前
34秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
Impiego dell’associazione acetazolamide/pentossifillina nel trattamento dell’ipoacusia improvvisa idiopatica in pazienti affetti da glaucoma cronico 900
錢鍾書楊絳親友書札 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3297370
求助须知:如何正确求助?哪些是违规求助? 2932791
关于积分的说明 8459401
捐赠科研通 2605608
什么是DOI,文献DOI怎么找? 1422424
科研通“疑难数据库(出版商)”最低求助积分说明 661383
邀请新用户注册赠送积分活动 644710