Partial multi-label learning via three-way decision-based tri-training

计算机科学 分类器(UML) 人工智能 机器学习 基本事实 训练集 数据挖掘 模式识别(心理学)
作者
Wenbin Qian,Yanqiang Tu,Jin Qian,Wenhao Shu
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:276: 110743-110743 被引量:10
标识
DOI:10.1016/j.knosys.2023.110743
摘要

In real-world application scenarios, multi-label learning (MLL) datasets often contain some irrelevant noisy labels, which degrades the performance of traditional multi-label learning models. In order to deal with this problem, partial multi-label learning (PML) is proposed, in which each instance is associated with a candidate label set, which includes multiple relevant ground-truth labels and some irrelevant noisy labels. The common strategy to deal with this problem is disambiguating the candidate label set, but the co-occurrence of noisy labels and ground-truth labels makes the disambiguation technique susceptible to error. In this paper, a novel disambiguation-free PML approach named PML-TT is proposed. Specifically, by adapting the tri-training framework, mutual cooperation and iteration between classifiers are used to correct noisy labels and improve the performance of the learning model. Moreover, the three-way decision is adapted to solve the conflict problem of the base classifier and obtain more useful training samples. In addition, the precise supervisory information of the non-candidate labels is exploited to make the predictions of the base classifier more accurate. Finally, experimental results on both synthetic and real-world PML datasets show that the proposed PML-TT approach can effectively reduce the negative influence of noisy labels and learn a robust model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
搜集达人应助科研通管家采纳,获得10
刚刚
上官若男应助科研通管家采纳,获得30
刚刚
烟花应助科研通管家采纳,获得10
刚刚
深情安青应助科研通管家采纳,获得10
刚刚
旺旺发布了新的文献求助10
刚刚
刚刚
JamesPei应助科研通管家采纳,获得10
刚刚
ED应助科研通管家采纳,获得10
刚刚
Ava应助科研通管家采纳,获得10
刚刚
慕青应助科研通管家采纳,获得10
刚刚
1秒前
1秒前
科研废柴应助科研通管家采纳,获得20
1秒前
1秒前
1秒前
1秒前
1秒前
无花果应助科研通管家采纳,获得20
1秒前
1秒前
昏睡的蟠桃应助f冯采纳,获得50
1秒前
pluto应助科研通管家采纳,获得10
1秒前
无声瀑布完成签到,获得积分10
1秒前
子非鱼发布了新的文献求助10
2秒前
奋斗冷风发布了新的文献求助10
2秒前
2秒前
hmx发布了新的文献求助10
2秒前
FashionBoy应助SUO采纳,获得10
2秒前
3秒前
3秒前
3秒前
淳之风发布了新的文献求助10
3秒前
SciGPT应助小苏打采纳,获得10
3秒前
qphys完成签到,获得积分10
4秒前
4秒前
wenwen完成签到,获得积分10
4秒前
4秒前
qqq完成签到,获得积分10
4秒前
猫独秀完成签到,获得积分10
5秒前
zuizui发布了新的文献求助10
5秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958563
求助须知:如何正确求助?哪些是违规求助? 3504871
关于积分的说明 11120709
捐赠科研通 3236153
什么是DOI,文献DOI怎么找? 1788666
邀请新用户注册赠送积分活动 871279
科研通“疑难数据库(出版商)”最低求助积分说明 802646