Indirect damage detection for bridges using sensing and temporarily parked vehicles

稳健性(进化) 情态动词 卡车 残余物 桥(图论) 结构工程 计算机科学 结构健康监测 工程类 汽车工程 算法 材料科学 医学 基因 内科学 生物化学 化学 高分子化学
作者
Zhenkun Li,Yifu Lan,Weiwei Lin
出处
期刊:Engineering Structures [Elsevier]
卷期号:291: 116459-116459 被引量:3
标识
DOI:10.1016/j.engstruct.2023.116459
摘要

Due to the influence of many factors such as vehicle properties, road roughness, and external noises, accurate indirect identification of the bridge’s frequencies is challenging. Further, given the insensitivity of the bridge’s frequencies to damage and limited acquired modal information, damage detection is often difficult to be implemented in practical engineering. This paper proposes an indirect approach to localize and quantify bridge damage using sensing and parked vehicles. First, equations for back-calculating residual contact-point responses of the sensing vehicle with suspension and tire damping and sensor-installing errors are newly deduced to eliminate its self-frequencies and suppress the negative effects of road roughness. Second, another temporarily parked truck is introduced to increase the amount of modal information about the bridge and its sensitivity to local damage. Third, a novel modal assurance criterion-based objective function using indirectly identified frequencies is proposed to enhance the robustness of damage detection. Numerical simulations utilizing a half-car model and a simply supported bridge verify the effectiveness of the proposed strategy. It is found that the new objective function improves the robustness of damage detection when the parked truck is employed at different positions. In addition, a higher speed of the sensing vehicle can negatively affect damage detection, while the ongoing traffic can help to resist the negative impact of environmental noises and bridge damping. By considering possible influence factors and model updating errors in practical applications, the damage can be located and quantified with acceptable precision.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
matlab发布了新的文献求助10
刚刚
刚刚
年轻绮波完成签到,获得积分10
1秒前
共享精神应助jundading采纳,获得10
1秒前
炙热晓露发布了新的文献求助10
3秒前
4秒前
5秒前
kk完成签到,获得积分10
6秒前
方明会发布了新的文献求助10
6秒前
7秒前
科研通AI2S应助shawn采纳,获得10
8秒前
小熊炸毛发布了新的文献求助10
8秒前
8秒前
Docline完成签到,获得积分10
10秒前
10秒前
10秒前
10秒前
科研通AI2S应助lylyzhl采纳,获得10
11秒前
科目三应助大麦迪采纳,获得10
12秒前
drwalyssa发布了新的文献求助10
12秒前
慕青应助羊羊羊采纳,获得10
13秒前
14秒前
一颗树完成签到,获得积分10
14秒前
12345发布了新的文献求助10
14秒前
matlab完成签到,获得积分10
15秒前
15秒前
jundading发布了新的文献求助10
15秒前
一颗树发布了新的文献求助10
17秒前
18秒前
YYY发布了新的文献求助10
20秒前
彭于晏应助青黛采纳,获得10
21秒前
文静梦菡发布了新的文献求助10
22秒前
estate完成签到,获得积分10
22秒前
24秒前
YYY完成签到,获得积分10
25秒前
26秒前
慢慢完成签到,获得积分10
26秒前
27秒前
28秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3157519
求助须知:如何正确求助?哪些是违规求助? 2808900
关于积分的说明 7878979
捐赠科研通 2467322
什么是DOI,文献DOI怎么找? 1313355
科研通“疑难数据库(出版商)”最低求助积分说明 630395
版权声明 601919