Prediction of postoperative complications after oesophagectomy using machine-learning methods

支持向量机 随机森林 逻辑回归 医学 人工智能 特征向量 人工神经网络 机器学习 外科 计算机科学 内科学
作者
Jin‐On Jung,Juan I. Pisula,Katarzyna Bożek,Felix Popp,Hans Fuchs,Wolfgang Schroeder,Christiane J. Bruns,Thomas Schmidt
出处
期刊:British Journal of Surgery [Oxford University Press]
卷期号:110 (10): 1361-1366 被引量:3
标识
DOI:10.1093/bjs/znad181
摘要

Oesophagectomy is an operation with a high risk of postoperative complications. The aim of this single-centre retrospective study was to apply machine-learning methods to predict complications (Clavien-Dindo grade IIIa or higher) and specific adverse events.Patients with resectable adenocarcinoma or squamous cell carcinoma of the oesophagus and gastro-oesophageal junction who underwent Ivor Lewis oesophagectomy between 2016 and 2021 were included. The tested algorithms were logistic regression after recursive feature elimination, random forest, k-nearest neighbour, support vector machine, and neural network. The algorithms were also compared with a current risk score (the Cologne risk score).457 patients had Clavien-Dindo grade IIIa or higher complications (52.9 per cent) versus 407 patients with Clavien-Dindo grade 0, I, or II complications (47.1 per cent). After 3-fold imputation and 3-fold cross-validation, the overall accuracies were: logistic regression after recursive feature elimination, 0.528; random forest, 0.535; k-nearest neighbour, 0.491; support vector machine, 0.511; neural network, 0.688; and Cologne risk score, 0.510. For medical complications, the results were: logistic regression after recursive feature elimination, 0.688; random forest, 0.664; k-nearest neighbour, 0.673; support vector machine, 0.681; neural network, 0.692; and Cologne risk score, 0.650. For surgical complications, the results were: logistic regression after recursive feature elimination, 0.621; random forest, 0.617; k-nearest neighbour, 0.620; support vector machine, 0.634; neural network, 0.667; and Cologne risk score, 0.624. The calculated area under the curve of the neural network was 0.672 for Clavien-Dindo grade IIIa or higher, 0.695 for medical complications, and 0.653 for surgical complications.The neural network scored the highest accuracies compared with all of the other models for the prediction of postoperative complications after oesophagectomy.The human gullet or stomach can develop tumours. Surgery can help to cure patients with these tumours. But the operation is risky because sometimes adverse events can happen afterwards. So far, there is no reliable prediction model. It may help to predict the risk of adverse events accurately. For example, patients with a high risk could be observed more thoroughly. Patients with a low risk may not need unnecessary procedures. The information of all patients with an operation at a specialized hospital was collected. Machine learning is a complex mathematical method and was used in this study. It is able to analyse big data sets of information. One machine-learning method called neural network was best in predicting adverse events. Right now, the performance may not be strong enough to fully rely on the prediction. However, refinement of the prediction and more data could improve the neural network in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
Weiweiweixiao完成签到,获得积分10
2秒前
顾矜应助认真的初翠采纳,获得10
4秒前
热心不凡完成签到,获得积分10
4秒前
4秒前
好好学习的小学生完成签到 ,获得积分10
4秒前
顾矜应助步凡采纳,获得10
4秒前
日富一日的fighter完成签到,获得积分10
5秒前
刘YF完成签到,获得积分10
5秒前
6秒前
好好学习发10分完成签到,获得积分10
6秒前
玄叶发布了新的文献求助10
6秒前
ty心明亮完成签到 ,获得积分10
7秒前
8秒前
陈月月鸟完成签到,获得积分10
9秒前
10秒前
zwk发布了新的文献求助30
11秒前
13秒前
13秒前
13秒前
虚幻初之发布了新的文献求助10
14秒前
玄叶完成签到,获得积分10
14秒前
15秒前
惊蛰完成签到,获得积分10
15秒前
嘟嘟嘟嘟发布了新的文献求助10
15秒前
zzzzzzzp应助hhh采纳,获得10
16秒前
天天快乐应助鬼火采纳,获得10
18秒前
磊少发布了新的文献求助10
18秒前
baibai发布了新的文献求助10
19秒前
MOMO完成签到,获得积分10
19秒前
613发布了新的文献求助10
20秒前
QPP完成签到,获得积分10
20秒前
有梦想的咸鱼完成签到,获得积分10
20秒前
Ava应助Enid采纳,获得10
23秒前
可爱的函函应助默默采纳,获得10
23秒前
yyyuuu完成签到,获得积分20
24秒前
步凡完成签到,获得积分10
24秒前
24秒前
25秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3975543
求助须知:如何正确求助?哪些是违规求助? 3519971
关于积分的说明 11200248
捐赠科研通 3256311
什么是DOI,文献DOI怎么找? 1798213
邀请新用户注册赠送积分活动 877446
科研通“疑难数据库(出版商)”最低求助积分说明 806338