清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Prediction of postoperative complications after oesophagectomy using machine-learning methods

支持向量机 随机森林 逻辑回归 医学 人工智能 特征向量 人工神经网络 机器学习 外科 计算机科学 内科学
作者
Jin‐On Jung,Juan I. Pisula,Katarzyna Bożek,Felix Popp,Hans Fuchs,Wolfgang Schroeder,Christiane J. Bruns,Thomas Schmidt
出处
期刊:British Journal of Surgery [Oxford University Press]
卷期号:110 (10): 1361-1366 被引量:3
标识
DOI:10.1093/bjs/znad181
摘要

Oesophagectomy is an operation with a high risk of postoperative complications. The aim of this single-centre retrospective study was to apply machine-learning methods to predict complications (Clavien-Dindo grade IIIa or higher) and specific adverse events.Patients with resectable adenocarcinoma or squamous cell carcinoma of the oesophagus and gastro-oesophageal junction who underwent Ivor Lewis oesophagectomy between 2016 and 2021 were included. The tested algorithms were logistic regression after recursive feature elimination, random forest, k-nearest neighbour, support vector machine, and neural network. The algorithms were also compared with a current risk score (the Cologne risk score).457 patients had Clavien-Dindo grade IIIa or higher complications (52.9 per cent) versus 407 patients with Clavien-Dindo grade 0, I, or II complications (47.1 per cent). After 3-fold imputation and 3-fold cross-validation, the overall accuracies were: logistic regression after recursive feature elimination, 0.528; random forest, 0.535; k-nearest neighbour, 0.491; support vector machine, 0.511; neural network, 0.688; and Cologne risk score, 0.510. For medical complications, the results were: logistic regression after recursive feature elimination, 0.688; random forest, 0.664; k-nearest neighbour, 0.673; support vector machine, 0.681; neural network, 0.692; and Cologne risk score, 0.650. For surgical complications, the results were: logistic regression after recursive feature elimination, 0.621; random forest, 0.617; k-nearest neighbour, 0.620; support vector machine, 0.634; neural network, 0.667; and Cologne risk score, 0.624. The calculated area under the curve of the neural network was 0.672 for Clavien-Dindo grade IIIa or higher, 0.695 for medical complications, and 0.653 for surgical complications.The neural network scored the highest accuracies compared with all of the other models for the prediction of postoperative complications after oesophagectomy.The human gullet or stomach can develop tumours. Surgery can help to cure patients with these tumours. But the operation is risky because sometimes adverse events can happen afterwards. So far, there is no reliable prediction model. It may help to predict the risk of adverse events accurately. For example, patients with a high risk could be observed more thoroughly. Patients with a low risk may not need unnecessary procedures. The information of all patients with an operation at a specialized hospital was collected. Machine learning is a complex mathematical method and was used in this study. It is able to analyse big data sets of information. One machine-learning method called neural network was best in predicting adverse events. Right now, the performance may not be strong enough to fully rely on the prediction. However, refinement of the prediction and more data could improve the neural network in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yellowonion完成签到 ,获得积分10
2秒前
cheng完成签到 ,获得积分10
3秒前
喜悦的香之完成签到 ,获得积分10
7秒前
小昕思完成签到 ,获得积分10
14秒前
随心所欲完成签到 ,获得积分10
17秒前
星辰大海应助科研通管家采纳,获得10
18秒前
所所应助科研通管家采纳,获得10
18秒前
心想事成完成签到 ,获得积分10
25秒前
如意2023完成签到 ,获得积分10
25秒前
mochalv123完成签到 ,获得积分10
30秒前
空儒完成签到 ,获得积分10
30秒前
sll完成签到 ,获得积分10
35秒前
坦率的从波完成签到 ,获得积分10
55秒前
yan完成签到,获得积分10
1分钟前
白柏233完成签到,获得积分10
1分钟前
hz_sz完成签到,获得积分10
1分钟前
氟锑酸完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
困困困完成签到 ,获得积分10
1分钟前
ZhaoZitong发布了新的文献求助10
1分钟前
mumu发布了新的文献求助10
1分钟前
1分钟前
alanbike完成签到,获得积分10
1分钟前
unicornmed发布了新的文献求助10
1分钟前
mumu完成签到,获得积分10
1分钟前
沈呆呆完成签到,获得积分10
1分钟前
赵李锋完成签到,获得积分10
1分钟前
Shandongdaxiu完成签到 ,获得积分10
2分钟前
启程完成签到 ,获得积分10
2分钟前
千帆破浪完成签到 ,获得积分10
2分钟前
2分钟前
量子星尘发布了新的文献求助50
2分钟前
飞云完成签到 ,获得积分10
2分钟前
LOST完成签到 ,获得积分10
3分钟前
huiluowork完成签到 ,获得积分10
3分钟前
康康完成签到 ,获得积分10
3分钟前
小果完成签到 ,获得积分10
3分钟前
独特易形完成签到 ,获得积分10
4分钟前
nojego完成签到,获得积分10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
Inherited Metabolic Disease in Adults: A Clinical Guide 500
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4612797
求助须知:如何正确求助?哪些是违规求助? 4017872
关于积分的说明 12436835
捐赠科研通 3700139
什么是DOI,文献DOI怎么找? 2040580
邀请新用户注册赠送积分活动 1073377
科研通“疑难数据库(出版商)”最低求助积分说明 957018