亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Prediction of postoperative complications after oesophagectomy using machine-learning methods

支持向量机 随机森林 逻辑回归 医学 人工智能 特征向量 人工神经网络 机器学习 外科 计算机科学 内科学
作者
Jin‐On Jung,Juan I. Pisula,Katarzyna Bożek,Felix Popp,Hans Fuchs,Wolfgang Schroeder,Christiane J. Bruns,Thomas Schmidt
出处
期刊:British Journal of Surgery 卷期号:110 (10): 1361-1366 被引量:3
标识
DOI:10.1093/bjs/znad181
摘要

Oesophagectomy is an operation with a high risk of postoperative complications. The aim of this single-centre retrospective study was to apply machine-learning methods to predict complications (Clavien-Dindo grade IIIa or higher) and specific adverse events.Patients with resectable adenocarcinoma or squamous cell carcinoma of the oesophagus and gastro-oesophageal junction who underwent Ivor Lewis oesophagectomy between 2016 and 2021 were included. The tested algorithms were logistic regression after recursive feature elimination, random forest, k-nearest neighbour, support vector machine, and neural network. The algorithms were also compared with a current risk score (the Cologne risk score).457 patients had Clavien-Dindo grade IIIa or higher complications (52.9 per cent) versus 407 patients with Clavien-Dindo grade 0, I, or II complications (47.1 per cent). After 3-fold imputation and 3-fold cross-validation, the overall accuracies were: logistic regression after recursive feature elimination, 0.528; random forest, 0.535; k-nearest neighbour, 0.491; support vector machine, 0.511; neural network, 0.688; and Cologne risk score, 0.510. For medical complications, the results were: logistic regression after recursive feature elimination, 0.688; random forest, 0.664; k-nearest neighbour, 0.673; support vector machine, 0.681; neural network, 0.692; and Cologne risk score, 0.650. For surgical complications, the results were: logistic regression after recursive feature elimination, 0.621; random forest, 0.617; k-nearest neighbour, 0.620; support vector machine, 0.634; neural network, 0.667; and Cologne risk score, 0.624. The calculated area under the curve of the neural network was 0.672 for Clavien-Dindo grade IIIa or higher, 0.695 for medical complications, and 0.653 for surgical complications.The neural network scored the highest accuracies compared with all of the other models for the prediction of postoperative complications after oesophagectomy.The human gullet or stomach can develop tumours. Surgery can help to cure patients with these tumours. But the operation is risky because sometimes adverse events can happen afterwards. So far, there is no reliable prediction model. It may help to predict the risk of adverse events accurately. For example, patients with a high risk could be observed more thoroughly. Patients with a low risk may not need unnecessary procedures. The information of all patients with an operation at a specialized hospital was collected. Machine learning is a complex mathematical method and was used in this study. It is able to analyse big data sets of information. One machine-learning method called neural network was best in predicting adverse events. Right now, the performance may not be strong enough to fully rely on the prediction. However, refinement of the prediction and more data could improve the neural network in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
情怀应助zzz采纳,获得10
6秒前
JinYang完成签到,获得积分10
10秒前
33秒前
夜云发布了新的文献求助10
38秒前
48秒前
传奇3应助夜云采纳,获得10
51秒前
zzz发布了新的文献求助10
53秒前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
zzz关闭了zzz文献求助
1分钟前
南寻完成签到,获得积分10
1分钟前
HMG1COA完成签到,获得积分10
1分钟前
思源应助HMG1COA采纳,获得10
1分钟前
zzz发布了新的文献求助10
1分钟前
2分钟前
Cl1audia发布了新的文献求助10
2分钟前
Ava应助Cl1audia采纳,获得10
2分钟前
田様应助世隐采纳,获得10
2分钟前
2分钟前
小二郎应助慢慢的地理人采纳,获得10
3分钟前
mashibeo完成签到,获得积分10
3分钟前
斯文败类应助pwy采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
zzz完成签到,获得积分10
3分钟前
LYegoist完成签到,获得积分10
3分钟前
3分钟前
和谐的夏岚完成签到 ,获得积分10
3分钟前
3分钟前
cc完成签到,获得积分10
4分钟前
4分钟前
共享精神应助世隐采纳,获得10
4分钟前
Tia0727完成签到 ,获得积分10
4分钟前
4分钟前
Alan完成签到 ,获得积分10
5分钟前
5分钟前
Lucas应助科研通管家采纳,获得10
5分钟前
马62发布了新的文献求助10
5分钟前
5分钟前
5分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3455664
求助须知:如何正确求助?哪些是违规求助? 3050901
关于积分的说明 9022998
捐赠科研通 2739435
什么是DOI,文献DOI怎么找? 1502826
科研通“疑难数据库(出版商)”最低求助积分说明 694628
邀请新用户注册赠送积分活动 693400