Determining fire frequency and its relationship with rangeland aboveground grass biomass using MODIS and Landsat imagery

牧场 样方 环境科学 植被(病理学) 采样(信号处理) 遥感 草原 增强植被指数 自然地理学 卫星图像 生物量(生态学) 林业 叶面积指数 水文学(农业) 地理 归一化差异植被指数 农学 生态学 植被指数 农林复合经营 地质学 生物 医学 岩土工程 滤波器(信号处理) 灌木 病理 计算机科学 计算机视觉
作者
C. Munyati,T. C. Mashego
出处
期刊:International Journal of Remote Sensing [Informa]
卷期号:44 (11): 3385-3411
标识
DOI:10.1080/01431161.2023.2221801
摘要

High frequency burned area (BA) images provide an opportunity to monitor rangeland fire frequency (FF). This study related grass aboveground biomass (AGB) to FF in a 4800 ha biodiversity conservation savannah-grassland rangeland. Archived (2000–2021), 500 m resolution MODIS burned area monthly images were used. Following Boolean coding (fire event pixel = 1, no-fire pixel = 0), addition GIS overlay analysis yielded total fires per pixel location. Fire detection accuracy was assessed using 2018–2021 management fire event records. Sample grass AGB data were obtained at the end of the 2020 and 2021 growing seasons from widely dispersed sampling sites with wide grass cover uniformity, where a 1 m quadrat was tossed randomly in a 20 m × 20 m plot up to three times. The quadrat-enclosed grass was harvested to soil level, air-dried, and weighed to generate site average AGB values, which were correlated with vegetation index (VI) values from sampling near-concurrent surface reflectance (L2SP) Landsat-8 OLI images. Four biomass-sensitive VIs utilising Landsat sensor spectral ranges were tested. The Enhanced Vegetation Index (EVI) yielded the strongest relationship (r = 0.410, p < 0.01). A linear model predicting grass AGB from EVI values was developed using 58% of sample data for training (R2 = 0.3062, p < 0.01) and 42% for validation (R2 = 0.5225, p < 0.001). Using the model, sampling site historical grass AGB values were predicted on same season, L2SP Landsat (TM, ETM+, OLI) images from 2000, 2002, 2006, 2009, 2013 and 2016, whose dates were selected by comparing rainfall. The MODIS images detected 73% of fires larger than 25 ha (one pixel). Most sites experienced long-term AGB gains, at faster rates in high FF (4–5 fires), low grazing sites. Most fires occurred as ecologically undesired late burns, indicating the utility of archived high-frequency BA images for rangeland management
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Cassio发布了新的文献求助10
刚刚
1秒前
1秒前
2秒前
社会主义接班人完成签到 ,获得积分10
3秒前
3秒前
jessicazhong完成签到,获得积分10
4秒前
节节高发布了新的文献求助10
4秒前
5秒前
5秒前
hyfwkd完成签到,获得积分10
5秒前
归有发布了新的文献求助20
6秒前
7秒前
独特绿蓉发布了新的文献求助10
7秒前
高兴的安阳完成签到,获得积分10
7秒前
8秒前
cyz012568完成签到,获得积分10
8秒前
烂漫的飞松完成签到,获得积分10
9秒前
自然的钻石关注了科研通微信公众号
9秒前
afaf发布了新的文献求助10
9秒前
水果发布了新的文献求助80
9秒前
领导范儿应助mokano采纳,获得10
10秒前
dinaa发布了新的文献求助10
10秒前
Moon会努力摘星星完成签到,获得积分20
10秒前
勤恳友灵完成签到 ,获得积分10
10秒前
11秒前
11秒前
itsserene应助科研通管家采纳,获得20
12秒前
科目三应助科研通管家采纳,获得10
12秒前
FashionBoy应助科研通管家采纳,获得10
12秒前
科研通AI2S应助科研通管家采纳,获得10
12秒前
哥特复兴Vs完成签到,获得积分10
12秒前
乐乐应助科研通管家采纳,获得10
12秒前
12秒前
乐乐应助科研通管家采纳,获得10
12秒前
Migue应助科研通管家采纳,获得10
12秒前
星辰大海应助科研通管家采纳,获得10
12秒前
12秒前
12秒前
CodeCraft应助科研通管家采纳,获得10
12秒前
高分求助中
Evolution 10000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3147820
求助须知:如何正确求助?哪些是违规求助? 2798873
关于积分的说明 7832037
捐赠科研通 2455841
什么是DOI,文献DOI怎么找? 1306979
科研通“疑难数据库(出版商)”最低求助积分说明 627957
版权声明 601587