Determining fire frequency and its relationship with rangeland aboveground grass biomass using MODIS and Landsat imagery

牧场 样方 环境科学 植被(病理学) 采样(信号处理) 遥感 草原 增强植被指数 自然地理学 卫星图像 生物量(生态学) 林业 叶面积指数 水文学(农业) 地理 归一化差异植被指数 农学 生态学 植被指数 农林复合经营 地质学 生物 医学 岩土工程 滤波器(信号处理) 灌木 病理 计算机科学 计算机视觉
作者
C. Munyati,Thabo Mashego
出处
期刊:International Journal of Remote Sensing [Informa]
卷期号:44 (11): 3385-3411 被引量:3
标识
DOI:10.1080/01431161.2023.2221801
摘要

High frequency burned area (BA) images provide an opportunity to monitor rangeland fire frequency (FF). This study related grass aboveground biomass (AGB) to FF in a 4800 ha biodiversity conservation savannah-grassland rangeland. Archived (2000–2021), 500 m resolution MODIS burned area monthly images were used. Following Boolean coding (fire event pixel = 1, no-fire pixel = 0), addition GIS overlay analysis yielded total fires per pixel location. Fire detection accuracy was assessed using 2018–2021 management fire event records. Sample grass AGB data were obtained at the end of the 2020 and 2021 growing seasons from widely dispersed sampling sites with wide grass cover uniformity, where a 1 m quadrat was tossed randomly in a 20 m × 20 m plot up to three times. The quadrat-enclosed grass was harvested to soil level, air-dried, and weighed to generate site average AGB values, which were correlated with vegetation index (VI) values from sampling near-concurrent surface reflectance (L2SP) Landsat-8 OLI images. Four biomass-sensitive VIs utilising Landsat sensor spectral ranges were tested. The Enhanced Vegetation Index (EVI) yielded the strongest relationship (r = 0.410, p < 0.01). A linear model predicting grass AGB from EVI values was developed using 58% of sample data for training (R2 = 0.3062, p < 0.01) and 42% for validation (R2 = 0.5225, p < 0.001). Using the model, sampling site historical grass AGB values were predicted on same season, L2SP Landsat (TM, ETM+, OLI) images from 2000, 2002, 2006, 2009, 2013 and 2016, whose dates were selected by comparing rainfall. The MODIS images detected 73% of fires larger than 25 ha (one pixel). Most sites experienced long-term AGB gains, at faster rates in high FF (4–5 fires), low grazing sites. Most fires occurred as ecologically undesired late burns, indicating the utility of archived high-frequency BA images for rangeland management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
aaaa完成签到,获得积分10
刚刚
爱吃肥牛完成签到,获得积分10
刚刚
浪子应助yanziwu94采纳,获得10
刚刚
善学以致用应助徐向成采纳,获得10
1秒前
失眠的夏柳完成签到,获得积分10
1秒前
Jay完成签到,获得积分20
2秒前
huxuehong完成签到 ,获得积分10
2秒前
小Y应助卫踏歌采纳,获得20
2秒前
无语的凡梦完成签到,获得积分10
2秒前
rrjl完成签到,获得积分10
2秒前
cheng4046完成签到,获得积分10
2秒前
欢呼的帽子完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
3秒前
3秒前
天真吴邪完成签到,获得积分10
3秒前
大力发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
4秒前
5秒前
QWSS发布了新的文献求助10
5秒前
shsdkl完成签到,获得积分10
5秒前
xdy1990完成签到,获得积分10
5秒前
在水一方应助山头人二号采纳,获得10
5秒前
justin完成签到,获得积分10
6秒前
zz完成签到 ,获得积分10
6秒前
7分运气完成签到,获得积分10
7秒前
Lament完成签到,获得积分10
7秒前
乐乐应助jia采纳,获得10
8秒前
8秒前
秋秋完成签到,获得积分10
8秒前
8秒前
Joey完成签到,获得积分10
8秒前
Sylvia完成签到,获得积分10
9秒前
Bill完成签到 ,获得积分0
9秒前
知鸢完成签到,获得积分10
10秒前
rrrrrrun完成签到,获得积分20
10秒前
爱笑的蘑菇完成签到,获得积分10
10秒前
Northtime完成签到,获得积分10
10秒前
Bressanone完成签到,获得积分10
10秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
A Practical Introduction to Regression Discontinuity Designs 2000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5658748
求助须知:如何正确求助?哪些是违规求助? 4824231
关于积分的说明 15082960
捐赠科研通 4817306
什么是DOI,文献DOI怎么找? 2578116
邀请新用户注册赠送积分活动 1532801
关于科研通互助平台的介绍 1491595