亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Dynamic Parallel Machine Scheduling With Deep Q-Network

符号 强化学习 计算机科学 调度(生产过程) 作业车间调度 人工智能 马尔可夫决策过程 数学优化 马尔可夫过程 数学 算术 地铁列车时刻表 统计 操作系统
作者
Chien‐Liang Liu,Chun-Jan Tseng,Tzu‐Hsuan Huang,Jia‐Hong Wang
出处
期刊:IEEE transactions on systems, man, and cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:53 (11): 6792-6804 被引量:7
标识
DOI:10.1109/tsmc.2023.3289322
摘要

Parallel machine scheduling (PMS) is a common setting in many manufacturing facilities, in which each job is allowed to be processed on one of the machines of the same type. It involves scheduling $n$ jobs on $m$ machines to minimize certain objective functions. For preemptive scheduling, most problems are not only NP-hard but also difficult in practice. Moreover, many unexpected events, such as machine failure and requirement change, are inevitable in the practical production process, meaning that rescheduling is required for static scheduling methods. Deep reinforcement learning (DRL), which combines deep learning and reinforcement learning, has achieved promising results in several domains and has shown the potential to solve large Markov decision process (MDP) optimization tasks. Moreover, PMS problems can be formulated as an MDP problem, inspiring us to devise a DRL method to deal with PMS problems in a dynamic environment. We develop a novel DRL-based PMS method, called DPMS, in which the developed model considers the characteristics of PMS to design states and the reward. The actions involve dispatching rules, so DPMS can be considered a meta-dispatching-rule system that can efficiently select a sequence of dispatching rules based on the current environment or unexpected events. The experimental results demonstrate that DPMS can yield promising results in a dynamic environment by learning from the interactions between the agent and the environment. Furthermore, we conduct extensive experiments to analyze DPMS in the context of developing a DRL to deal with dynamic PMS problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
YifanWang完成签到,获得积分0
2秒前
仰望星空发布了新的文献求助10
5秒前
7秒前
YH完成签到,获得积分10
8秒前
徐继军发布了新的文献求助10
9秒前
仰望星空完成签到,获得积分10
13秒前
13秒前
GingerF完成签到,获得积分0
14秒前
轻松冰淇淋完成签到,获得积分10
23秒前
24秒前
jkj发布了新的文献求助10
25秒前
32秒前
踏实的傲之完成签到,获得积分20
32秒前
34秒前
温暖水云发布了新的文献求助10
37秒前
852应助壹玖一陆采纳,获得10
43秒前
wanna发布了新的文献求助10
45秒前
45秒前
完美谷秋完成签到 ,获得积分10
46秒前
突突leolo发布了新的文献求助10
49秒前
HOXXXiii完成签到,获得积分10
57秒前
1分钟前
隐形曼青应助时间尘埃采纳,获得10
1分钟前
1分钟前
l900发布了新的文献求助20
1分钟前
YifanWang应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
Lucas应助科研通管家采纳,获得10
1分钟前
YifanWang应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
可可西里发布了新的文献求助10
1分钟前
1分钟前
zwenng完成签到,获得积分10
1分钟前
1分钟前
1分钟前
21145077发布了新的文献求助10
1分钟前
1分钟前
1分钟前
fsy123完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1041
Mentoring for Wellbeing in Schools 1000
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5493810
求助须知:如何正确求助?哪些是违规求助? 4591808
关于积分的说明 14434715
捐赠科研通 4524218
什么是DOI,文献DOI怎么找? 2478734
邀请新用户注册赠送积分活动 1463717
关于科研通互助平台的介绍 1436490