Dynamic Parallel Machine Scheduling With Deep Q-Network

符号 强化学习 计算机科学 调度(生产过程) 作业车间调度 人工智能 马尔可夫决策过程 数学优化 马尔可夫过程 数学 算术 地铁列车时刻表 统计 操作系统
作者
Chien‐Liang Liu,Chun-Jan Tseng,Tzu‐Hsuan Huang,Jia‐Hong Wang
出处
期刊:IEEE transactions on systems, man, and cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:53 (11): 6792-6804 被引量:7
标识
DOI:10.1109/tsmc.2023.3289322
摘要

Parallel machine scheduling (PMS) is a common setting in many manufacturing facilities, in which each job is allowed to be processed on one of the machines of the same type. It involves scheduling $n$ jobs on $m$ machines to minimize certain objective functions. For preemptive scheduling, most problems are not only NP-hard but also difficult in practice. Moreover, many unexpected events, such as machine failure and requirement change, are inevitable in the practical production process, meaning that rescheduling is required for static scheduling methods. Deep reinforcement learning (DRL), which combines deep learning and reinforcement learning, has achieved promising results in several domains and has shown the potential to solve large Markov decision process (MDP) optimization tasks. Moreover, PMS problems can be formulated as an MDP problem, inspiring us to devise a DRL method to deal with PMS problems in a dynamic environment. We develop a novel DRL-based PMS method, called DPMS, in which the developed model considers the characteristics of PMS to design states and the reward. The actions involve dispatching rules, so DPMS can be considered a meta-dispatching-rule system that can efficiently select a sequence of dispatching rules based on the current environment or unexpected events. The experimental results demonstrate that DPMS can yield promising results in a dynamic environment by learning from the interactions between the agent and the environment. Furthermore, we conduct extensive experiments to analyze DPMS in the context of developing a DRL to deal with dynamic PMS problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
实验顺利完成签到,获得积分10
2秒前
3秒前
小强x完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
5秒前
As发布了新的文献求助10
5秒前
Ava应助嗯嗯嗯采纳,获得10
6秒前
8秒前
8秒前
健壮书包完成签到,获得积分10
9秒前
9秒前
11秒前
dandanmomo应助加减乘除采纳,获得10
12秒前
爆米花应助大面包采纳,获得10
12秒前
makabaka发布了新的文献求助10
13秒前
稀有人类发布了新的文献求助10
13秒前
14秒前
打打应助stuart采纳,获得10
14秒前
As完成签到,获得积分20
15秒前
15秒前
dzk发布了新的文献求助10
15秒前
隐形曼青应助Dr.Joseph采纳,获得10
16秒前
18秒前
平淡思雁完成签到,获得积分10
19秒前
19秒前
脑洞疼应助现代的雪糕采纳,获得10
21秒前
猪肉超人菜婴蚊完成签到,获得积分10
21秒前
辛勤的奇异果完成签到,获得积分10
22秒前
大面包发布了新的文献求助10
26秒前
蜀黍发布了新的文献求助10
26秒前
28秒前
华仔应助辛勤的奇异果采纳,获得10
29秒前
29秒前
机智的灵萱完成签到,获得积分10
29秒前
30秒前
dzk完成签到,获得积分10
31秒前
32秒前
32秒前
zjm1441发布了新的文献求助10
32秒前
yang完成签到,获得积分20
32秒前
Helen发布了新的文献求助10
33秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958130
求助须知:如何正确求助?哪些是违规求助? 3504312
关于积分的说明 11117892
捐赠科研通 3235623
什么是DOI,文献DOI怎么找? 1788403
邀请新用户注册赠送积分活动 871211
科研通“疑难数据库(出版商)”最低求助积分说明 802547