Dynamic Parallel Machine Scheduling With Deep Q-Network

符号 强化学习 计算机科学 调度(生产过程) 作业车间调度 人工智能 马尔可夫决策过程 数学优化 马尔可夫过程 数学 算术 地铁列车时刻表 统计 操作系统
作者
Chien‐Liang Liu,Chun-Jan Tseng,Tzu‐Hsuan Huang,Jia‐Hong Wang
出处
期刊:IEEE transactions on systems, man, and cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:53 (11): 6792-6804 被引量:7
标识
DOI:10.1109/tsmc.2023.3289322
摘要

Parallel machine scheduling (PMS) is a common setting in many manufacturing facilities, in which each job is allowed to be processed on one of the machines of the same type. It involves scheduling $n$ jobs on $m$ machines to minimize certain objective functions. For preemptive scheduling, most problems are not only NP-hard but also difficult in practice. Moreover, many unexpected events, such as machine failure and requirement change, are inevitable in the practical production process, meaning that rescheduling is required for static scheduling methods. Deep reinforcement learning (DRL), which combines deep learning and reinforcement learning, has achieved promising results in several domains and has shown the potential to solve large Markov decision process (MDP) optimization tasks. Moreover, PMS problems can be formulated as an MDP problem, inspiring us to devise a DRL method to deal with PMS problems in a dynamic environment. We develop a novel DRL-based PMS method, called DPMS, in which the developed model considers the characteristics of PMS to design states and the reward. The actions involve dispatching rules, so DPMS can be considered a meta-dispatching-rule system that can efficiently select a sequence of dispatching rules based on the current environment or unexpected events. The experimental results demonstrate that DPMS can yield promising results in a dynamic environment by learning from the interactions between the agent and the environment. Furthermore, we conduct extensive experiments to analyze DPMS in the context of developing a DRL to deal with dynamic PMS problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
旺仔完成签到,获得积分10
1秒前
123发布了新的文献求助30
1秒前
2秒前
3秒前
pgg发布了新的文献求助10
3秒前
小蘑菇应助我世界第一快采纳,获得10
4秒前
Oooo发布了新的文献求助10
4秒前
王一博完成签到,获得积分10
5秒前
5秒前
7秒前
8秒前
9秒前
123完成签到,获得积分10
10秒前
12秒前
2021完成签到 ,获得积分10
12秒前
缓慢的书蝶完成签到 ,获得积分10
13秒前
14秒前
zz完成签到,获得积分10
15秒前
HGD发布了新的文献求助10
15秒前
安东路完成签到,获得积分10
15秒前
15秒前
等待小刺猬完成签到,获得积分10
16秒前
科研通AI2S应助Fine采纳,获得10
16秒前
pgg发布了新的文献求助10
19秒前
LIUFEIYE8887完成签到 ,获得积分10
20秒前
牵猫散步的鱼完成签到,获得积分10
24秒前
WXHL完成签到 ,获得积分10
26秒前
oyc完成签到,获得积分10
26秒前
flow完成签到,获得积分10
27秒前
27秒前
HGD完成签到,获得积分20
29秒前
priss111应助郑zhenglanyou采纳,获得20
30秒前
科研通AI2S应助科研通管家采纳,获得10
31秒前
小蘑菇应助科研通管家采纳,获得10
31秒前
31秒前
Lucas应助科研通管家采纳,获得10
31秒前
31秒前
31秒前
科研通AI2S应助科研通管家采纳,获得10
31秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3155767
求助须知:如何正确求助?哪些是违规求助? 2807008
关于积分的说明 7871538
捐赠科研通 2465369
什么是DOI,文献DOI怎么找? 1312221
科研通“疑难数据库(出版商)”最低求助积分说明 629947
版权声明 601905