Automatic sleep-stage classification of heart rate and actigraphy data using deep and transfer learning approaches

深度学习 活动记录 计算机科学 人工智能 多导睡眠图 睡眠阶段 学习迁移 机器学习 睡眠(系统调用) 卷积神经网络 可靠性(半导体) 人工神经网络 医学 脑电图 功率(物理) 物理 量子力学 精神科 操作系统 昼夜节律 内分泌学
作者
Yaopeng Ma,Johannes Zschocke,Martin Glos,Maria Kluge,Thomas Penzel,Jan W. Kantelhardt,Ronny P. Bartsch
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:163: 107193-107193 被引量:7
标识
DOI:10.1016/j.compbiomed.2023.107193
摘要

Manual sleep-stage scoring based on full-night polysomnography data recorded in a sleep lab has been the gold standard of clinical sleep medicine. This costly and time-consuming approach is unfit for long-term studies as well as assessment of sleep on a population level. With the vast amount of physiological data becoming available from wrist-worn devices, deep learning techniques provide an opportunity for fast and reliable automatic sleep-stage classification tasks. However, training a deep neural network requires large annotated sleep databases, which are not available for long-term epidemiological studies. In this paper, we introduce an end-to-end temporal convolutional neural network able to automatically score sleep stages from raw heartbeat RR interval (RRI) and wrist actigraphy data. Moreover, a transfer learning approach enables the training of the network on a large public database (Sleep Heart Health Study, SHHS) and its subsequent application to a much smaller database recorded by a wristband device. The transfer learning significantly shortens training time and improves sleep-scoring accuracy from 68.9% to 73.8% and inter-rater reliability (Cohen’s kappa) from 0.51 to 0.59. We also found that for the SHHS database, automatic sleep-scoring accuracy using deep learning shows a logarithmic relationship with the training size. Although deep learning approaches for automatic sleep scoring are not yet comparable to the inter-rater reliability among sleep technicians, performance is expected to significantly improve in the near future when more large public databases become available. We anticipate those deep learning techniques, when combined with our transfer learning approach, will leverage automatic sleep scoring of physiological data from wearable devices and enable the investigation of sleep in large cohort studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
今后应助洁净斑马采纳,获得10
刚刚
5秒前
monster完成签到 ,获得积分10
5秒前
Stageruner完成签到,获得积分10
5秒前
胡茶茶完成签到 ,获得积分10
6秒前
pwang_lixin完成签到,获得积分10
6秒前
蓝刺完成签到,获得积分10
7秒前
小城故事完成签到,获得积分10
9秒前
你怎么睡得着觉完成签到,获得积分10
9秒前
9秒前
9秒前
蝈蝈完成签到,获得积分10
10秒前
阳佟若剑完成签到,获得积分10
10秒前
11秒前
大模型应助庾稀采纳,获得10
11秒前
勤恳的嚓茶完成签到,获得积分10
11秒前
科研王子完成签到,获得积分10
12秒前
LLL完成签到,获得积分10
13秒前
洁净斑马发布了新的文献求助10
13秒前
谦让汝燕完成签到,获得积分10
14秒前
量子星尘发布了新的文献求助10
15秒前
闪闪的斑马完成签到,获得积分10
16秒前
书生完成签到,获得积分10
16秒前
柳易槐完成签到,获得积分10
17秒前
pwang_ecust完成签到,获得积分10
17秒前
shuicaoxi完成签到,获得积分20
17秒前
hx完成签到 ,获得积分10
18秒前
务实时光完成签到,获得积分10
18秒前
HCCha完成签到,获得积分10
19秒前
19秒前
...完成签到 ,获得积分0
21秒前
暮晓见完成签到 ,获得积分10
21秒前
23秒前
wx发布了新的文献求助50
23秒前
Tonald Yang发布了新的文献求助10
23秒前
myg123完成签到 ,获得积分10
25秒前
Sean完成签到,获得积分10
27秒前
夏紫儿完成签到 ,获得积分10
27秒前
东方琉璃完成签到,获得积分10
28秒前
典雅的夜安完成签到,获得积分10
28秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015708
求助须知:如何正确求助?哪些是违规求助? 3555661
关于积分的说明 11318291
捐赠科研通 3288879
什么是DOI,文献DOI怎么找? 1812301
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812027