Automatic sleep-stage classification of heart rate and actigraphy data using deep and transfer learning approaches

深度学习 活动记录 计算机科学 人工智能 多导睡眠图 睡眠阶段 学习迁移 机器学习 睡眠(系统调用) 卷积神经网络 可靠性(半导体) 人工神经网络 医学 脑电图 功率(物理) 物理 量子力学 精神科 操作系统 昼夜节律 内分泌学
作者
Yaopeng Ma,Johannes Zschocke,Martin Glos,Maria Kluge,Thomas Penzel,Jan W. Kantelhardt,Ronny P. Bartsch
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:163: 107193-107193 被引量:7
标识
DOI:10.1016/j.compbiomed.2023.107193
摘要

Manual sleep-stage scoring based on full-night polysomnography data recorded in a sleep lab has been the gold standard of clinical sleep medicine. This costly and time-consuming approach is unfit for long-term studies as well as assessment of sleep on a population level. With the vast amount of physiological data becoming available from wrist-worn devices, deep learning techniques provide an opportunity for fast and reliable automatic sleep-stage classification tasks. However, training a deep neural network requires large annotated sleep databases, which are not available for long-term epidemiological studies. In this paper, we introduce an end-to-end temporal convolutional neural network able to automatically score sleep stages from raw heartbeat RR interval (RRI) and wrist actigraphy data. Moreover, a transfer learning approach enables the training of the network on a large public database (Sleep Heart Health Study, SHHS) and its subsequent application to a much smaller database recorded by a wristband device. The transfer learning significantly shortens training time and improves sleep-scoring accuracy from 68.9% to 73.8% and inter-rater reliability (Cohen’s kappa) from 0.51 to 0.59. We also found that for the SHHS database, automatic sleep-scoring accuracy using deep learning shows a logarithmic relationship with the training size. Although deep learning approaches for automatic sleep scoring are not yet comparable to the inter-rater reliability among sleep technicians, performance is expected to significantly improve in the near future when more large public databases become available. We anticipate those deep learning techniques, when combined with our transfer learning approach, will leverage automatic sleep scoring of physiological data from wearable devices and enable the investigation of sleep in large cohort studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
脑洞疼应助Cc792采纳,获得10
刚刚
2秒前
3秒前
小鱼爱吃肉应助san采纳,获得10
6秒前
9秒前
April完成签到 ,获得积分10
9秒前
成就飞柏完成签到,获得积分10
10秒前
充电宝应助Siren采纳,获得10
11秒前
斯文败类应助舒适亦凝采纳,获得10
12秒前
善学以致用应助weik采纳,获得10
14秒前
淳于安筠完成签到,获得积分10
14秒前
15秒前
Jin发布了新的文献求助10
15秒前
欣喜的代容完成签到 ,获得积分10
16秒前
怕孤独的访云完成签到 ,获得积分10
17秒前
17秒前
珊熙发布了新的文献求助10
20秒前
线条完成签到,获得积分10
20秒前
Misaka完成签到,获得积分10
21秒前
XuZ应助ykmykm采纳,获得10
21秒前
无心的秋珊完成签到 ,获得积分10
22秒前
xuqiansd发布了新的文献求助10
23秒前
脑洞疼应助飘逸小笼包采纳,获得50
23秒前
天真蚂蚁应助asdfqwer采纳,获得10
24秒前
CodeCraft应助hillbert采纳,获得10
30秒前
珊熙完成签到,获得积分10
30秒前
情怀应助生活于微采纳,获得10
30秒前
32秒前
老王家的二姑娘完成签到 ,获得积分10
33秒前
复杂不二完成签到,获得积分10
33秒前
完美世界应助xuqiansd采纳,获得10
33秒前
35秒前
0128lun完成签到,获得积分10
37秒前
shierfang完成签到 ,获得积分0
37秒前
矮小的盼夏完成签到 ,获得积分10
37秒前
37秒前
善学以致用应助小白采纳,获得10
38秒前
39秒前
轨迹完成签到,获得积分10
39秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 870
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
the critical response to tennessee williams 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3254080
求助须知:如何正确求助?哪些是违规求助? 2896443
关于积分的说明 8292655
捐赠科研通 2565288
什么是DOI,文献DOI怎么找? 1392945
科研通“疑难数据库(出版商)”最低求助积分说明 652418
邀请新用户注册赠送积分活动 629856