Encoding the Intrinsic Interaction Information for Vehicle Trajectory Prediction

计算机科学 弹道 编码 时间戳 保险丝(电气) 人工智能 编码(内存) 图形 计算机视觉 运动(物理) 实时计算 理论计算机科学 工程类 生物化学 化学 物理 天文 电气工程 基因
作者
Jing Lian,Shuoxian Li,Dongfang Yang,Jiaxuan Zhang,Linhui Li
出处
期刊:IEEE transactions on intelligent vehicles [Institute of Electrical and Electronics Engineers]
卷期号:9 (1): 2600-2611 被引量:1
标识
DOI:10.1109/tiv.2023.3288976
摘要

Due to their strong dependence on high-definition (HD) maps, mainstream methods cannot make accurate predictions of vehicle trajectories under missing map conditions or in dynamically changing scenarios. In this paper, the interaction features intrinsic in traffic scenes are utilized and the implicit traffic priors related to vehicle motion in the scene are extracted to improve the accuracy of vehicle trajectory prediction when no HD map is available. First, a graph attention network is constructed to encode the motion state and local interactions between vehicles at each historical timestamp. Then a bi-axial Transformer is introduced to alternately update the global interaction and vehicle motion features. At the same time, a multi-scale structure is proposed to fuse the high-level behavior logic and low-level motion primitives of the agent vehicle. Finally, a trajectory decoder is used to output multi-modal vehicle trajectories. The proposed model was trained and evaluated using the Argoverse1 Forecasting dataset. The experimental results show that all metrics of this method were better than the no-HD map ablations of mainstream prediction models, and even better than some mainstream prediction methods with HD map encoding. In addition, a Lidar-based physical perception platform was set up on an experimental vehicle, and the generalization capability of the proposed method was validated in real traffic scenes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
友好白凡发布了新的文献求助10
1秒前
小禾同学发布了新的文献求助10
1秒前
田様应助耿继生采纳,获得10
1秒前
2秒前
3秒前
温赢发布了新的文献求助10
4秒前
健壮听露发布了新的文献求助10
4秒前
疯狂的寻绿完成签到,获得积分10
4秒前
一根藤发布了新的文献求助10
4秒前
5秒前
所所应助XCHI采纳,获得10
5秒前
zly发布了新的文献求助10
7秒前
wu8577应助高兴的灵雁采纳,获得10
7秒前
蓝桉发布了新的文献求助10
8秒前
tao发布了新的文献求助10
8秒前
小马甲应助牛牛眉目采纳,获得10
9秒前
9秒前
10秒前
10秒前
大个应助小呱采纳,获得30
11秒前
Lin完成签到,获得积分20
12秒前
13秒前
ct完成签到,获得积分10
13秒前
曙夜完成签到,获得积分10
13秒前
14秒前
一根藤发布了新的文献求助10
14秒前
switch616完成签到,获得积分10
16秒前
Owen应助乌云乌云快走开采纳,获得10
17秒前
17秒前
多情怜蕾完成签到,获得积分10
17秒前
强健的中蓝完成签到,获得积分10
17秒前
albertxin完成签到,获得积分10
18秒前
18秒前
XCHI发布了新的文献求助10
19秒前
19秒前
Akim应助switch616采纳,获得10
19秒前
小二郎应助健壮听露采纳,获得10
20秒前
hhh发布了新的文献求助10
20秒前
sunrise发布了新的文献求助10
22秒前
23秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956275
求助须知:如何正确求助?哪些是违规求助? 3502464
关于积分的说明 11107805
捐赠科研通 3233133
什么是DOI,文献DOI怎么找? 1787170
邀请新用户注册赠送积分活动 870498
科研通“疑难数据库(出版商)”最低求助积分说明 802093