Encoding the Intrinsic Interaction Information for Vehicle Trajectory Prediction

计算机科学 弹道 编码 时间戳 保险丝(电气) 人工智能 编码(内存) 图形 计算机视觉 运动(物理) 实时计算 理论计算机科学 工程类 化学 天文 物理 电气工程 基因 生物化学
作者
Jing Lian,Shuoxian Li,Dongfang Yang,Jiaxuan Zhang,Linhui Li
出处
期刊:IEEE transactions on intelligent vehicles [Institute of Electrical and Electronics Engineers]
卷期号:9 (1): 2600-2611 被引量:1
标识
DOI:10.1109/tiv.2023.3288976
摘要

Due to their strong dependence on high-definition (HD) maps, mainstream methods cannot make accurate predictions of vehicle trajectories under missing map conditions or in dynamically changing scenarios. In this paper, the interaction features intrinsic in traffic scenes are utilized and the implicit traffic priors related to vehicle motion in the scene are extracted to improve the accuracy of vehicle trajectory prediction when no HD map is available. First, a graph attention network is constructed to encode the motion state and local interactions between vehicles at each historical timestamp. Then a bi-axial Transformer is introduced to alternately update the global interaction and vehicle motion features. At the same time, a multi-scale structure is proposed to fuse the high-level behavior logic and low-level motion primitives of the agent vehicle. Finally, a trajectory decoder is used to output multi-modal vehicle trajectories. The proposed model was trained and evaluated using the Argoverse1 Forecasting dataset. The experimental results show that all metrics of this method were better than the no-HD map ablations of mainstream prediction models, and even better than some mainstream prediction methods with HD map encoding. In addition, a Lidar-based physical perception platform was set up on an experimental vehicle, and the generalization capability of the proposed method was validated in real traffic scenes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Lucas应助杳鸢采纳,获得30
2秒前
冷静水蓝发布了新的文献求助10
3秒前
练习者发布了新的文献求助10
4秒前
快乐应助行宇采纳,获得10
5秒前
会撒娇的延恶完成签到,获得积分10
5秒前
LL发布了新的文献求助10
5秒前
橙汁完成签到,获得积分10
6秒前
7秒前
谢奕完成签到,获得积分10
8秒前
8秒前
eugene_sysu关注了科研通微信公众号
8秒前
袁奇点完成签到,获得积分10
8秒前
练习者完成签到,获得积分10
11秒前
研友_12345678完成签到,获得积分10
11秒前
搜集达人应助清浅采纳,获得10
12秒前
dada发布了新的文献求助10
13秒前
传奇3应助YANG采纳,获得10
13秒前
zero桥发布了新的文献求助10
14秒前
peach发布了新的文献求助10
15秒前
15秒前
ding应助dfggb采纳,获得10
15秒前
Owen应助酥酥采纳,获得10
15秒前
15秒前
请叫我鬼才应助ivy采纳,获得10
17秒前
17秒前
19秒前
19秒前
大模型应助KKIII采纳,获得10
20秒前
快乐应助Tobiuo采纳,获得10
20秒前
zpz完成签到,获得积分10
20秒前
zzz完成签到,获得积分10
21秒前
real季氢发布了新的文献求助10
22秒前
22秒前
kang12完成签到 ,获得积分10
22秒前
852应助行宇采纳,获得10
22秒前
dada完成签到 ,获得积分20
23秒前
23秒前
23秒前
24秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3156090
求助须知:如何正确求助?哪些是违规求助? 2807496
关于积分的说明 7873356
捐赠科研通 2465814
什么是DOI,文献DOI怎么找? 1312446
科研通“疑难数据库(出版商)”最低求助积分说明 630107
版权声明 601905