Self-supervised learning–based underwater acoustical signal classification via mask modeling

计算机科学 水下 光谱图 人工智能 模式识别(心理学) 信号(编程语言) 深度学习 特征学习 代表(政治) 语音识别 机器学习 海洋学 程序设计语言 地质学 政治 政治学 法学
作者
Kele Xu,Qisheng Xu,Kang You,Bo-Qing Zhu,Ming Feng,Dawei Feng,Bo Liu
出处
期刊:Journal of the Acoustical Society of America [Acoustical Society of America]
卷期号:154 (1): 5-15 被引量:4
标识
DOI:10.1121/10.0019937
摘要

The classification of underwater acoustic signals has garnered a great deal of attention in recent years due to its potential applications in military and civilian contexts. While deep neural networks have emerged as the preferred method for this task, the representation of the signals plays a crucial role in determining the performance of the classification. However, the representation of underwater acoustic signals remains an under-explored area. In addition, the annotation of large-scale datasets for the training of deep networks is a challenging and expensive task. To tackle these challenges, we propose a novel self-supervised representation learning method for underwater acoustic signal classification. Our approach consists of two stages: a pretext learning stage using unlabeled data and a downstream fine-tuning stage using a small amount of labeled data. The pretext learning stage involves randomly masking the log Mel spectrogram and reconstructing the masked part using the Swin Transformer architecture. This allows us to learn a general representation of the acoustic signal. Our method achieves a classification accuracy of 80.22% on the DeepShip dataset, outperforming or matching previous competitive methods. Furthermore, our classification method demonstrates good performance in low signal-to-noise ratio or few-shot settings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
沫沫完成签到,获得积分10
刚刚
刚刚
刚刚
优雅沛文完成签到 ,获得积分10
1秒前
1秒前
2秒前
汉堡包应助banksy采纳,获得10
2秒前
3秒前
4秒前
完美世界应助L416采纳,获得10
4秒前
5秒前
123完成签到,获得积分10
5秒前
传奇3应助家伟采纳,获得10
5秒前
5秒前
Fanny完成签到,获得积分10
6秒前
陈词丶完成签到,获得积分10
6秒前
星辰大海应助无辜不言采纳,获得10
7秒前
小桃耶发布了新的文献求助10
7秒前
7秒前
斯文败类应助虚心的清采纳,获得10
7秒前
7秒前
林间发布了新的文献求助10
8秒前
8秒前
9秒前
9秒前
浮游应助0529采纳,获得10
10秒前
爆米花应助lina采纳,获得10
10秒前
NexusExplorer应助淡定的冰萍采纳,获得10
10秒前
10秒前
10秒前
充电宝应助凤凰山采纳,获得10
10秒前
11秒前
11秒前
酷波er应助六块六采纳,获得30
11秒前
11秒前
11秒前
苏梗完成签到 ,获得积分10
12秒前
12秒前
wjd完成签到 ,获得积分10
12秒前
淡然思山完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 921
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Antihistamine substances. XXII; Synthetic antispasmodics. IV. Basic ethers derived from aliphatic carbinols and α-substituted benzyl alcohols 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5430372
求助须知:如何正确求助?哪些是违规求助? 4543585
关于积分的说明 14188041
捐赠科研通 4461764
什么是DOI,文献DOI怎么找? 2446288
邀请新用户注册赠送积分活动 1437689
关于科研通互助平台的介绍 1414458