液晶
材料科学
手性(物理)
自组装
纳米技术
液晶
纳米晶
纳米结构
光电子学
手征对称破缺
夸克
Nambu–Jona Lasinio模型
量子力学
物理
作者
Qianqian Wang,Wen Niu,Shixuan Feng,Jun Liu,Huan Liu,Qianqian Zhu
出处
期刊:ACS Nano
[American Chemical Society]
日期:2023-07-18
卷期号:17 (15): 14283-14308
被引量:13
标识
DOI:10.1021/acsnano.3c03797
摘要
Cellulose nanocrystal (CNC) suspensions self-assembled into chiral nematic liquid crystals. This property has enabled the development of versatile optical materials with fascinating properties. Nevertheless, the scale-up production and commercial success of chiral nematic CNC superstructures face significant challenges. Fabrication of chiral nematic CNC nanostructures suffers from a ubiquitous pernicious trade-off between uniform chiral nematic structure and rapid self-assembly. Specifically, the chiral nematic assembly of CNCs is a time-consuming, spontaneous process that involves the organization of particles into ordered nanostructures as the solvent evaporates. This review is driven by the interest in accelerating chiral nematic CNC assembly and promoting a long-range oriented chiral nematic CNC superstructure. To start this review, the chirality origins of CNC and CNC aggregates are analyzed. This is followed by a summary of the recent advances in stimuli-accelerated chiral nematic CNC self-assembly procedures, including evaporation-induced self-assembly, continuous coating, vacuum-assisted self-assembly, and shear-induced CNC assembly under confinement. In particular, stimuli-induced unwinding, alignment, and relaxation of chiral nematic structures were highlighted, offering a significant link between the accelerated assembly approaches and uniform chiral nematic nanostructures. Ultimately, future opportunities and challenges for rapid chiral nematic CNC assembly are discussed for more innovative and exciting applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI