亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Addressing the Overfitting in Partial Domain Adaptation With Self-Training and Contrastive Learning

过度拟合 计算机科学 人工智能 模式识别(心理学) 域适应 熵(时间箭头) 机器学习 领域(数学分析) 分类器(UML) 数学 人工神经网络 数学分析 物理 量子力学
作者
Chunmei He,Xiuguang Li,Xia Yue,Jing Tang,Jie Yang,Zhengchun Ye
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:34 (3): 1532-1545 被引量:15
标识
DOI:10.1109/tcsvt.2023.3296617
摘要

Partial domain adaptation (PDA) assumes that target domain class label set is a subset of that of source domain, while this problem setting is close to the actual scenario. At present, there are mainly two methods to solve the overfitting of source domain in PDA, namely the entropy minimization and the weighted self-training. However, the entropy minimization method may make the distribution prediction sharp but inaccurate for samples with relatively average prediction distribution, and cause the model to learn more error information. While the weighted self-training method will introduce erroneous noise information in the self-training process due to the existence of noise weights. Therefore, we address these issues in our work and propose self-training contrastive partial domain adaptation method (STCPDA). We present two modules to mine domain information in STCPDA. We first design self-training module based on simple samples in target domain to address the overfitting to source domain. We divide the target domain samples into simple samples with high reliability and difficult samples with low reliability, and the pseudo-labels of simple samples are selected for self-training learning. Then we construct the contrastive learning module for source and target domains. We embed contrastive learning into feature space of the two domains. By this contrastive learning module, we can fully explore the hidden information in all domain samples and make the class boundary more salient. Many experimental results on five datasets show the effectiveness and excellent classification performance of our method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
6秒前
妮子发布了新的社区帖子
8秒前
阿乐完成签到 ,获得积分10
13秒前
lily给ZJakariae的求助进行了留言
14秒前
26秒前
28秒前
31秒前
小o发布了新的文献求助10
34秒前
42秒前
karstbing完成签到,获得积分10
43秒前
50秒前
58秒前
lily完成签到,获得积分10
59秒前
上官若男应助妮子采纳,获得30
1分钟前
共享精神应助小o采纳,获得10
1分钟前
1分钟前
1分钟前
Arron完成签到,获得积分10
1分钟前
1分钟前
汤317完成签到,获得积分10
1分钟前
yuzuiris完成签到 ,获得积分10
1分钟前
1分钟前
Estrella发布了新的文献求助10
1分钟前
1121完成签到 ,获得积分10
1分钟前
Estrella完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
赘婿应助zy采纳,获得10
1分钟前
Zongxin应助千早爱音采纳,获得100
1分钟前
2分钟前
ding应助托塔大王采纳,获得10
2分钟前
二三语逢山外山完成签到 ,获得积分10
2分钟前
zy发布了新的文献求助10
2分钟前
2分钟前
zy完成签到,获得积分10
2分钟前
2分钟前
我不到啊完成签到 ,获得积分10
2分钟前
2分钟前
重庆森林完成签到,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5595676
求助须知:如何正确求助?哪些是违规求助? 4680968
关于积分的说明 14818069
捐赠科研通 4651636
什么是DOI,文献DOI怎么找? 2535574
邀请新用户注册赠送积分活动 1503527
关于科研通互助平台的介绍 1469754