Addressing the Overfitting in Partial Domain Adaptation With Self-Training and Contrastive Learning

过度拟合 计算机科学 人工智能 模式识别(心理学) 域适应 熵(时间箭头) 机器学习 领域(数学分析) 分类器(UML) 数学 人工神经网络 数学分析 物理 量子力学
作者
Chunmei He,Xiuguang Li,Xia Yue,Jing Tang,Jie Yang,Zhengchun Ye
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:34 (3): 1532-1545 被引量:15
标识
DOI:10.1109/tcsvt.2023.3296617
摘要

Partial domain adaptation (PDA) assumes that target domain class label set is a subset of that of source domain, while this problem setting is close to the actual scenario. At present, there are mainly two methods to solve the overfitting of source domain in PDA, namely the entropy minimization and the weighted self-training. However, the entropy minimization method may make the distribution prediction sharp but inaccurate for samples with relatively average prediction distribution, and cause the model to learn more error information. While the weighted self-training method will introduce erroneous noise information in the self-training process due to the existence of noise weights. Therefore, we address these issues in our work and propose self-training contrastive partial domain adaptation method (STCPDA). We present two modules to mine domain information in STCPDA. We first design self-training module based on simple samples in target domain to address the overfitting to source domain. We divide the target domain samples into simple samples with high reliability and difficult samples with low reliability, and the pseudo-labels of simple samples are selected for self-training learning. Then we construct the contrastive learning module for source and target domains. We embed contrastive learning into feature space of the two domains. By this contrastive learning module, we can fully explore the hidden information in all domain samples and make the class boundary more salient. Many experimental results on five datasets show the effectiveness and excellent classification performance of our method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
素和姣姣完成签到 ,获得积分10
刚刚
JM发布了新的文献求助10
1秒前
马雯慧完成签到,获得积分10
1秒前
1秒前
典雅的钥匙完成签到,获得积分10
2秒前
3秒前
今天晚上早点睡完成签到 ,获得积分10
3秒前
墨墨小7完成签到,获得积分10
3秒前
李健的粉丝团团长应助hu采纳,获得10
4秒前
4秒前
5秒前
张小毛完成签到,获得积分10
5秒前
九思发布了新的文献求助10
5秒前
冯哒哒发布了新的文献求助10
6秒前
8秒前
黑米粥发布了新的文献求助10
8秒前
9秒前
9秒前
9秒前
OvO_4577发布了新的文献求助10
9秒前
zll完成签到 ,获得积分10
9秒前
sanner发布了新的文献求助10
10秒前
11秒前
11秒前
11秒前
蒋丞丞丞汁完成签到 ,获得积分10
13秒前
fmd123发布了新的文献求助10
13秒前
楼芷天完成签到,获得积分10
13秒前
木风落完成签到,获得积分10
13秒前
14秒前
寒月孤灯散千屈完成签到,获得积分10
14秒前
量子星尘发布了新的文献求助10
15秒前
16秒前
爆米花应助冯哒哒采纳,获得10
16秒前
16秒前
17秒前
kyou完成签到,获得积分10
17秒前
18秒前
科研通AI6应助研友_ndvmV8采纳,获得10
18秒前
yangxue发布了新的文献求助10
18秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 1000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Elements of Evolutionary Genetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5453677
求助须知:如何正确求助?哪些是违规求助? 4561217
关于积分的说明 14281209
捐赠科研通 4485189
什么是DOI,文献DOI怎么找? 2456535
邀请新用户注册赠送积分活动 1447259
关于科研通互助平台的介绍 1422687