重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

Addressing the Overfitting in Partial Domain Adaptation With Self-Training and Contrastive Learning

过度拟合 计算机科学 人工智能 模式识别(心理学) 域适应 熵(时间箭头) 机器学习 领域(数学分析) 分类器(UML) 数学 人工神经网络 数学分析 物理 量子力学
作者
Chunmei He,Xiuguang Li,Xia Yue,Jing Tang,Jie Yang,Zhengchun Ye
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:34 (3): 1532-1545 被引量:15
标识
DOI:10.1109/tcsvt.2023.3296617
摘要

Partial domain adaptation (PDA) assumes that target domain class label set is a subset of that of source domain, while this problem setting is close to the actual scenario. At present, there are mainly two methods to solve the overfitting of source domain in PDA, namely the entropy minimization and the weighted self-training. However, the entropy minimization method may make the distribution prediction sharp but inaccurate for samples with relatively average prediction distribution, and cause the model to learn more error information. While the weighted self-training method will introduce erroneous noise information in the self-training process due to the existence of noise weights. Therefore, we address these issues in our work and propose self-training contrastive partial domain adaptation method (STCPDA). We present two modules to mine domain information in STCPDA. We first design self-training module based on simple samples in target domain to address the overfitting to source domain. We divide the target domain samples into simple samples with high reliability and difficult samples with low reliability, and the pseudo-labels of simple samples are selected for self-training learning. Then we construct the contrastive learning module for source and target domains. We embed contrastive learning into feature space of the two domains. By this contrastive learning module, we can fully explore the hidden information in all domain samples and make the class boundary more salient. Many experimental results on five datasets show the effectiveness and excellent classification performance of our method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大白发布了新的文献求助10
刚刚
刚刚
浮游应助bulangni采纳,获得10
刚刚
1秒前
酱圤发布了新的文献求助10
1秒前
CodeCraft应助null采纳,获得10
1秒前
爱学习的憨憨鸭完成签到,获得积分10
2秒前
2秒前
3秒前
3秒前
3秒前
FashionBoy应助健忘的元冬采纳,获得10
3秒前
量子星尘发布了新的文献求助10
3秒前
Miao发布了新的文献求助10
4秒前
科研通AI2S应助xixi采纳,获得10
4秒前
岁月静好完成签到 ,获得积分10
4秒前
从容宛筠完成签到,获得积分10
4秒前
茫123456发布了新的文献求助10
5秒前
宋贺贺发布了新的文献求助10
5秒前
上官若男应助zhuchenglu采纳,获得10
6秒前
7秒前
8秒前
烟花应助溟夔蝶魅采纳,获得10
8秒前
9秒前
FashionBoy应助科研通管家采纳,获得10
9秒前
无极微光应助科研通管家采纳,获得20
9秒前
从容宛筠发布了新的文献求助10
9秒前
xxfsx应助科研通管家采纳,获得10
9秒前
xxfsx应助科研通管家采纳,获得10
10秒前
xxfsx应助科研通管家采纳,获得10
10秒前
乐乐应助科研通管家采纳,获得10
10秒前
xxfsx应助科研通管家采纳,获得10
10秒前
彭于晏应助科研通管家采纳,获得10
10秒前
缓慢明辉发布了新的文献求助10
10秒前
Owen应助科研通管家采纳,获得10
10秒前
xxfsx应助科研通管家采纳,获得10
10秒前
10秒前
爆米花应助科研通管家采纳,获得10
10秒前
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5466072
求助须知:如何正确求助?哪些是违规求助? 4570135
关于积分的说明 14322892
捐赠科研通 4496608
什么是DOI,文献DOI怎么找? 2463448
邀请新用户注册赠送积分活动 1452319
关于科研通互助平台的介绍 1427516