Addressing the Overfitting in Partial Domain Adaptation With Self-Training and Contrastive Learning

过度拟合 计算机科学 人工智能 模式识别(心理学) 域适应 熵(时间箭头) 机器学习 领域(数学分析) 分类器(UML) 数学 人工神经网络 数学分析 物理 量子力学
作者
Chunmei He,Xiuguang Li,Xia Yue,Jing Tang,Jie Yang,Zhengchun Ye
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:34 (3): 1532-1545 被引量:15
标识
DOI:10.1109/tcsvt.2023.3296617
摘要

Partial domain adaptation (PDA) assumes that target domain class label set is a subset of that of source domain, while this problem setting is close to the actual scenario. At present, there are mainly two methods to solve the overfitting of source domain in PDA, namely the entropy minimization and the weighted self-training. However, the entropy minimization method may make the distribution prediction sharp but inaccurate for samples with relatively average prediction distribution, and cause the model to learn more error information. While the weighted self-training method will introduce erroneous noise information in the self-training process due to the existence of noise weights. Therefore, we address these issues in our work and propose self-training contrastive partial domain adaptation method (STCPDA). We present two modules to mine domain information in STCPDA. We first design self-training module based on simple samples in target domain to address the overfitting to source domain. We divide the target domain samples into simple samples with high reliability and difficult samples with low reliability, and the pseudo-labels of simple samples are selected for self-training learning. Then we construct the contrastive learning module for source and target domains. We embed contrastive learning into feature space of the two domains. By this contrastive learning module, we can fully explore the hidden information in all domain samples and make the class boundary more salient. Many experimental results on five datasets show the effectiveness and excellent classification performance of our method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Sience发布了新的文献求助10
1秒前
1秒前
yy完成签到,获得积分10
1秒前
小鸣完成签到 ,获得积分10
2秒前
Zyj发布了新的文献求助10
2秒前
沐沐发布了新的文献求助10
2秒前
rainchan0227完成签到,获得积分10
2秒前
伯言发布了新的文献求助10
2秒前
2秒前
2秒前
2秒前
3秒前
3秒前
黑暗之神发布了新的文献求助30
4秒前
4秒前
阿嘉发布了新的文献求助10
4秒前
刘三萍完成签到,获得积分10
4秒前
研友_nxeAlZ发布了新的文献求助30
4秒前
兰兰猪头完成签到,获得积分20
5秒前
NexusExplorer应助山雀采纳,获得10
5秒前
聪明的绮波完成签到,获得积分10
5秒前
5秒前
syalonyui完成签到,获得积分10
6秒前
结实旭尧完成签到 ,获得积分10
6秒前
chichi完成签到,获得积分10
7秒前
7秒前
标致以云完成签到,获得积分10
7秒前
lhq发布了新的文献求助10
8秒前
星辰大海应助选波采纳,获得10
8秒前
8秒前
南湖秋水发布了新的文献求助10
8秒前
9秒前
biu完成签到,获得积分20
9秒前
星辰大海应助彩色亿先采纳,获得10
9秒前
白大侠发布了新的文献求助10
9秒前
舒适千儿完成签到,获得积分10
10秒前
10秒前
徐一一发布了新的文献求助10
10秒前
white驳回了shijie应助
10秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557071
求助须知:如何正确求助?哪些是违规求助? 4642352
关于积分的说明 14667621
捐赠科研通 4583738
什么是DOI,文献DOI怎么找? 2514386
邀请新用户注册赠送积分活动 1488750
关于科研通互助平台的介绍 1459336