清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Addressing the Overfitting in Partial Domain Adaptation With Self-Training and Contrastive Learning

过度拟合 计算机科学 人工智能 模式识别(心理学) 域适应 熵(时间箭头) 机器学习 领域(数学分析) 分类器(UML) 数学 人工神经网络 数学分析 物理 量子力学
作者
Chunmei He,Xiuguang Li,Xia Yue,Jing Tang,Jie Yang,Zhengchun Ye
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:34 (3): 1532-1545 被引量:7
标识
DOI:10.1109/tcsvt.2023.3296617
摘要

Partial domain adaptation (PDA) assumes that target domain class label set is a subset of that of source domain, while this problem setting is close to the actual scenario. At present, there are mainly two methods to solve the overfitting of source domain in PDA, namely the entropy minimization and the weighted self-training. However, the entropy minimization method may make the distribution prediction sharp but inaccurate for samples with relatively average prediction distribution, and cause the model to learn more error information. While the weighted self-training method will introduce erroneous noise information in the self-training process due to the existence of noise weights. Therefore, we address these issues in our work and propose self-training contrastive partial domain adaptation method (STCPDA). We present two modules to mine domain information in STCPDA. We first design self-training module based on simple samples in target domain to address the overfitting to source domain. We divide the target domain samples into simple samples with high reliability and difficult samples with low reliability, and the pseudo-labels of simple samples are selected for self-training learning. Then we construct the contrastive learning module for source and target domains. We embed contrastive learning into feature space of the two domains. By this contrastive learning module, we can fully explore the hidden information in all domain samples and make the class boundary more salient. Many experimental results on five datasets show the effectiveness and excellent classification performance of our method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
隐形曼青应助一二采纳,获得10
32秒前
油菜花完成签到,获得积分10
33秒前
54秒前
一二发布了新的文献求助10
57秒前
2分钟前
Johnny发布了新的文献求助10
2分钟前
Johnny完成签到,获得积分10
2分钟前
菠萝包完成签到 ,获得积分10
2分钟前
FashionBoy应助科研通管家采纳,获得10
3分钟前
事不过三应助Lee采纳,获得10
4分钟前
Lee完成签到,获得积分10
4分钟前
小点完成签到 ,获得积分10
4分钟前
裕小完成签到 ,获得积分20
4分钟前
晴莹完成签到 ,获得积分10
5分钟前
星辰大海应助水厂小白采纳,获得10
7分钟前
韩寒完成签到 ,获得积分10
7分钟前
7分钟前
水厂小白发布了新的文献求助10
7分钟前
爆米花应助科研通管家采纳,获得150
7分钟前
nanfang完成签到 ,获得积分10
8分钟前
Qvby3完成签到 ,获得积分10
8分钟前
量子星尘发布了新的文献求助10
8分钟前
John完成签到,获得积分10
9分钟前
John发布了新的文献求助10
9分钟前
南星完成签到 ,获得积分10
9分钟前
上官若男应助水厂小白采纳,获得10
9分钟前
9分钟前
水厂小白发布了新的文献求助10
9分钟前
两个榴莲完成签到,获得积分0
10分钟前
糟糕的翅膀完成签到,获得积分10
11分钟前
12分钟前
平凡之路发布了新的文献求助10
12分钟前
Ma完成签到,获得积分10
13分钟前
激动的似狮完成签到,获得积分10
13分钟前
fabius0351完成签到 ,获得积分10
14分钟前
linglingling完成签到 ,获得积分10
14分钟前
量子星尘发布了新的文献求助10
15分钟前
细心书包完成签到,获得积分10
17分钟前
砺行应助科研通管家采纳,获得10
17分钟前
白天亮完成签到,获得积分10
19分钟前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5138158
求助须知:如何正确求助?哪些是违规求助? 4337605
关于积分的说明 13511720
捐赠科研通 4176526
什么是DOI,文献DOI怎么找? 2290088
邀请新用户注册赠送积分活动 1290602
关于科研通互助平台的介绍 1232553