Addressing the Overfitting in Partial Domain Adaptation With Self-Training and Contrastive Learning

过度拟合 计算机科学 人工智能 模式识别(心理学) 域适应 熵(时间箭头) 机器学习 领域(数学分析) 分类器(UML) 数学 人工神经网络 数学分析 物理 量子力学
作者
Chunmei He,Xiuguang Li,Xia Yue,Jing Tang,Jie Yang,Zhengchun Ye
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:34 (3): 1532-1545 被引量:7
标识
DOI:10.1109/tcsvt.2023.3296617
摘要

Partial domain adaptation (PDA) assumes that target domain class label set is a subset of that of source domain, while this problem setting is close to the actual scenario. At present, there are mainly two methods to solve the overfitting of source domain in PDA, namely the entropy minimization and the weighted self-training. However, the entropy minimization method may make the distribution prediction sharp but inaccurate for samples with relatively average prediction distribution, and cause the model to learn more error information. While the weighted self-training method will introduce erroneous noise information in the self-training process due to the existence of noise weights. Therefore, we address these issues in our work and propose self-training contrastive partial domain adaptation method (STCPDA). We present two modules to mine domain information in STCPDA. We first design self-training module based on simple samples in target domain to address the overfitting to source domain. We divide the target domain samples into simple samples with high reliability and difficult samples with low reliability, and the pseudo-labels of simple samples are selected for self-training learning. Then we construct the contrastive learning module for source and target domains. We embed contrastive learning into feature space of the two domains. By this contrastive learning module, we can fully explore the hidden information in all domain samples and make the class boundary more salient. Many experimental results on five datasets show the effectiveness and excellent classification performance of our method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
23完成签到,获得积分10
1秒前
颖涵完成签到,获得积分10
1秒前
科研通AI5应助好困采纳,获得10
1秒前
shanshan完成签到,获得积分10
1秒前
微笑的白萱完成签到,获得积分20
2秒前
maxyer完成签到,获得积分10
3秒前
叶子完成签到,获得积分10
3秒前
花开米兰城完成签到,获得积分10
6秒前
呜呼啦呼完成签到 ,获得积分10
6秒前
yuehan完成签到 ,获得积分0
7秒前
小马哥完成签到,获得积分10
8秒前
俞孤风完成签到,获得积分10
9秒前
开心寄松完成签到,获得积分10
10秒前
10秒前
CAE上路到上吊完成签到,获得积分10
10秒前
hhh完成签到,获得积分10
10秒前
zyy完成签到 ,获得积分10
10秒前
烟雨发布了新的文献求助10
10秒前
整齐百褶裙完成签到 ,获得积分10
11秒前
跳跳糖完成签到,获得积分10
16秒前
zhangyulu完成签到 ,获得积分10
16秒前
研友_5Zl9D8完成签到,获得积分10
17秒前
X519664508完成签到,获得积分0
17秒前
19秒前
20秒前
上官若男应助隐形的眼神采纳,获得10
20秒前
明ming到此一游完成签到 ,获得积分10
20秒前
慕青应助烟雨采纳,获得10
22秒前
漂亮的抽屉完成签到,获得积分20
22秒前
一蓑烟雨完成签到,获得积分10
23秒前
瞿访云完成签到,获得积分10
23秒前
24秒前
ooo发布了新的文献求助10
24秒前
WILAY889完成签到,获得积分10
24秒前
Qing发布了新的文献求助10
25秒前
一一一完成签到,获得积分10
25秒前
初小花完成签到,获得积分10
25秒前
王丹靖完成签到 ,获得积分10
26秒前
11完成签到,获得积分10
26秒前
欢呼的丁真完成签到,获得积分10
27秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968578
求助须知:如何正确求助?哪些是违规求助? 3513406
关于积分的说明 11167631
捐赠科研通 3248853
什么是DOI,文献DOI怎么找? 1794499
邀请新用户注册赠送积分活动 875150
科研通“疑难数据库(出版商)”最低求助积分说明 804671