Addressing the Overfitting in Partial Domain Adaptation With Self-Training and Contrastive Learning

过度拟合 计算机科学 人工智能 模式识别(心理学) 域适应 熵(时间箭头) 机器学习 领域(数学分析) 分类器(UML) 数学 人工神经网络 量子力学 物理 数学分析
作者
Chunmei He,Xiuguang Li,Xia Yue,Jing Tang,Jie Yang,Zhengchun Ye
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:34 (3): 1532-1545 被引量:5
标识
DOI:10.1109/tcsvt.2023.3296617
摘要

Partial domain adaptation (PDA) assumes that target domain class label set is a subset of that of source domain, while this problem setting is close to the actual scenario. At present, there are mainly two methods to solve the overfitting of source domain in PDA, namely the entropy minimization and the weighted self-training. However, the entropy minimization method may make the distribution prediction sharp but inaccurate for samples with relatively average prediction distribution, and cause the model to learn more error information. While the weighted self-training method will introduce erroneous noise information in the self-training process due to the existence of noise weights. Therefore, we address these issues in our work and propose self-training contrastive partial domain adaptation method (STCPDA). We present two modules to mine domain information in STCPDA. We first design self-training module based on simple samples in target domain to address the overfitting to source domain. We divide the target domain samples into simple samples with high reliability and difficult samples with low reliability, and the pseudo-labels of simple samples are selected for self-training learning. Then we construct the contrastive learning module for source and target domains. We embed contrastive learning into feature space of the two domains. By this contrastive learning module, we can fully explore the hidden information in all domain samples and make the class boundary more salient. Many experimental results on five datasets show the effectiveness and excellent classification performance of our method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
AJ给AJ的求助进行了留言
刚刚
陈森完成签到,获得积分10
1秒前
1秒前
MISA完成签到 ,获得积分10
2秒前
在水一方应助yyy采纳,获得10
3秒前
Lijia_YAO发布了新的文献求助10
3秒前
三石一鸟应助tangying8642采纳,获得10
3秒前
科研白小白完成签到,获得积分10
4秒前
5秒前
abbo发布了新的文献求助10
6秒前
6秒前
英姑应助didi采纳,获得10
6秒前
wanci应助Wendy采纳,获得10
6秒前
NexusExplorer应助zyy采纳,获得10
7秒前
脑洞疼应助zyy采纳,获得10
7秒前
leeee发布了新的文献求助10
8秒前
Murphy_12发布了新的文献求助10
8秒前
鱼鱼鱼发布了新的文献求助10
8秒前
酷波er应助XXXX采纳,获得10
9秒前
斯文败类应助尘雾采纳,获得10
10秒前
10秒前
旁白发布了新的文献求助10
11秒前
jiang完成签到 ,获得积分10
12秒前
12秒前
12秒前
不配.应助细腻的荆采纳,获得10
13秒前
隐形曼青应助Hoooo...采纳,获得10
13秒前
14秒前
CipherSage应助believe采纳,获得10
14秒前
15秒前
zyy完成签到,获得积分10
15秒前
看不懂发布了新的文献求助10
15秒前
19完成签到,获得积分10
15秒前
17秒前
可乐加冰完成签到,获得积分10
17秒前
19秒前
19秒前
积极问晴发布了新的文献求助10
19秒前
独特飞鸟完成签到 ,获得积分10
20秒前
20秒前
高分求助中
Shape Determination of Large Sedimental Rock Fragments 2000
Sustainability in Tides Chemistry 2000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3128551
求助须知:如何正确求助?哪些是违规求助? 2779326
关于积分的说明 7742499
捐赠科研通 2434629
什么是DOI,文献DOI怎么找? 1293580
科研通“疑难数据库(出版商)”最低求助积分说明 623344
版权声明 600514