A novel vessels feature extraction method in traditional Chinese medicine (TCM)

计算机科学 特征提取 人工智能 中医药 特征(语言学) 模式识别(心理学) 医学 病理 语言学 哲学 替代医学
作者
Hong Peng,Yilin Zhang,Ning Niu,Jiahao Wang,Yiming Liu,Guanjun Wang,Chenyang Xue,Mengxing Huang
标识
DOI:10.1117/12.2679820
摘要

In Chinese medicine, eye diagnosis is essential for diagnosis and treatment. However, most current image-processing techniques focus on tongue diagnosis, and most foreign studies on ocular diagnosis focus on segmenting fundus vascular images. Moreover, most of the foreign studies on scleral vessels are focused on identification rather than on TCM discernment. Scleral vessels can significantly characterize the pathological features of the human body’s five internal and six internal organs. Scleral vessels are essential for the objective study of TCM visual diagnosis. However, due to the small size and complex structure of scleral vessels, it is difficult to extract them by existing methods effectively. To achieve more accurate scleral blood vessel extraction, we introduce the residual connection structure and CA-Module attention mechanism in the U2Net1 network to avoid the incompatibility between high-level and low-level features and enhance the information extraction by input fusion and feature extraction of RSU blocks. The experimental results show that Miou achieves an accuracy of 83.3%. The F1-score reaches 91.7%, which is more effective than the existing SOTA fundus vascular segmentation network FR-UNet2 for the experiments. According to the experimental results, Res-U2Net can segment sclerar vessels accurately. In future experiments, we will improve the vessel feature extraction network to increase its accuracy and gradually achieve better results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
吉良吉影完成签到,获得积分10
1秒前
2秒前
2秒前
三石SUN完成签到 ,获得积分10
2秒前
我心飞发布了新的文献求助10
3秒前
3秒前
科研通AI5应助Venus采纳,获得10
3秒前
Sudon完成签到 ,获得积分10
5秒前
5秒前
去追完成签到 ,获得积分10
7秒前
joybee完成签到,获得积分0
8秒前
搞怪泥猴桃完成签到,获得积分10
8秒前
稳重依云完成签到 ,获得积分10
10秒前
Wsyyy完成签到 ,获得积分10
10秒前
LC完成签到 ,获得积分10
11秒前
MXene应助神猪无敌采纳,获得20
11秒前
TIAOTIAO完成签到,获得积分10
12秒前
zhoujy完成签到,获得积分10
12秒前
再学三分钟完成签到 ,获得积分20
12秒前
未央完成签到,获得积分10
13秒前
ZHY完成签到,获得积分10
16秒前
sanwan发布了新的文献求助10
16秒前
JamesPei应助tyzsail采纳,获得10
16秒前
恋恋青葡萄完成签到,获得积分10
16秒前
陶醉怜容完成签到,获得积分10
16秒前
领导范儿应助搞怪泥猴桃采纳,获得10
16秒前
17秒前
晚风完成签到 ,获得积分10
17秒前
17秒前
科研通AI5应助半栀采纳,获得10
17秒前
pluto应助偷乐采纳,获得10
18秒前
再学三分钟关注了科研通微信公众号
18秒前
争气完成签到 ,获得积分10
20秒前
愈疏发布了新的文献求助10
21秒前
ceeray23应助十里长亭采纳,获得10
22秒前
afeifei完成签到,获得积分10
22秒前
22秒前
24秒前
moonlin完成签到 ,获得积分10
25秒前
everyone_woo完成签到,获得积分10
26秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3736892
求助须知:如何正确求助?哪些是违规求助? 3280817
关于积分的说明 10021089
捐赠科研通 2997457
什么是DOI,文献DOI怎么找? 1644633
邀请新用户注册赠送积分活动 782083
科研通“疑难数据库(出版商)”最低求助积分说明 749703