A similarity-based remaining useful life prediction method using multimodal degradation features and adjusted cosine similarity

余弦相似度 计算机科学 相似性(几何) 降级(电信) 人工智能 数据挖掘 模式识别(心理学) 残余物 可靠性(半导体) 希尔伯特-黄变换 算法 功率(物理) 物理 图像(数学) 滤波器(信号处理) 电信 量子力学 计算机视觉
作者
Chengcheng Kong,Wennian Yu,Qiang Zeng,Zixu Chen,Yizhen Peng
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:34 (10): 105112-105112 被引量:2
标识
DOI:10.1088/1361-6501/ace20b
摘要

Abstract When a large amount of full life-cycle data are available, similarity-based methods are the preferred method for remaining useful life (RUL) prediction due to their reliability and accuracy. Traditional similarity-based RUL prediction methods use a single model and single-scale degradation features, which are incapable of fully capturing the degradation behavior of the system. Additionally, the similarity of spatial orientation is neglected in the similarity-matching process. To fill these research gaps, a novel method is developed based on multimodal degradation features and adjusted cosine similarity (ACS) to tackle complex-system RUL prediction in this paper. Complete ensemble empirical mode decomposition with adaptive noise is employed to decouple global degradation and random fluctuations in run-to-failure sensor data. Slow feature analysis is utilized to obtain local degradation features, and residual terms are used as global degradation features. Then, multimodal degradation features are transformed into one-dimensional health degradation indicators by bidirectional gated recurrent unit autoencoder. An ACS is developed to estimate the matching similarity between the test degradation curve and the training degradation curve. The proposed scheme captures the time-varying multimodal degradation behavior and provides libraries of health curves with multiple degradation patterns. The designed scheme is evaluated on the C-MAPSS dataset and the results illustrate the competitiveness and effectiveness of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dd发布了新的文献求助10
刚刚
wz发布了新的文献求助10
刚刚
聪聪great完成签到,获得积分20
刚刚
谢灵运完成签到,获得积分10
1秒前
兴奋仙人掌完成签到,获得积分10
1秒前
慕青应助迅速的代桃采纳,获得10
1秒前
sugar完成签到,获得积分10
1秒前
下雨天完成签到,获得积分10
2秒前
古德猫宁完成签到,获得积分10
2秒前
2秒前
daisies应助yana采纳,获得20
2秒前
何佳易关注了科研通微信公众号
2秒前
cdgbdfbsfdvsd完成签到,获得积分10
3秒前
zero完成签到,获得积分10
4秒前
类囊体薄膜完成签到,获得积分10
4秒前
5秒前
sparks完成签到,获得积分10
5秒前
5秒前
Yuanyuan发布了新的文献求助30
6秒前
brier0218完成签到,获得积分10
6秒前
6秒前
云云完成签到,获得积分10
6秒前
心灵美复天完成签到,获得积分10
6秒前
chenyq1177完成签到 ,获得积分10
7秒前
哦豁拐咯完成签到,获得积分10
8秒前
毕业大吉完成签到,获得积分20
8秒前
糖丸完成签到,获得积分10
8秒前
颖仔完成签到,获得积分10
9秒前
doin完成签到,获得积分10
9秒前
发一篇sci完成签到 ,获得积分10
9秒前
老实皮皮虾完成签到,获得积分10
10秒前
慕青应助石头采纳,获得10
11秒前
Kins完成签到,获得积分10
11秒前
清浅发布了新的文献求助20
11秒前
王五发布了新的文献求助10
11秒前
康康米其林完成签到,获得积分10
12秒前
12秒前
王小海111完成签到 ,获得积分10
12秒前
13秒前
A阿澍完成签到,获得积分10
13秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960462
求助须知:如何正确求助?哪些是违规求助? 3506587
关于积分的说明 11131436
捐赠科研通 3238853
什么是DOI,文献DOI怎么找? 1789898
邀请新用户注册赠送积分活动 872032
科研通“疑难数据库(出版商)”最低求助积分说明 803118