A similarity-based remaining useful life prediction method using multimodal degradation features and adjusted cosine similarity

余弦相似度 计算机科学 相似性(几何) 降级(电信) 人工智能 数据挖掘 模式识别(心理学) 残余物 可靠性(半导体) 希尔伯特-黄变换 算法 功率(物理) 物理 图像(数学) 滤波器(信号处理) 电信 量子力学 计算机视觉
作者
Chengcheng Kong,Wennian Yu,Qiang Zeng,Zixu Chen,Yizhen Peng
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:34 (10): 105112-105112
标识
DOI:10.1088/1361-6501/ace20b
摘要

Abstract When a large amount of full life-cycle data are available, similarity-based methods are the preferred method for remaining useful life (RUL) prediction due to their reliability and accuracy. Traditional similarity-based RUL prediction methods use a single model and single-scale degradation features, which are incapable of fully capturing the degradation behavior of the system. Additionally, the similarity of spatial orientation is neglected in the similarity-matching process. To fill these research gaps, a novel method is developed based on multimodal degradation features and adjusted cosine similarity (ACS) to tackle complex-system RUL prediction in this paper. Complete ensemble empirical mode decomposition with adaptive noise is employed to decouple global degradation and random fluctuations in run-to-failure sensor data. Slow feature analysis is utilized to obtain local degradation features, and residual terms are used as global degradation features. Then, multimodal degradation features are transformed into one-dimensional health degradation indicators by bidirectional gated recurrent unit autoencoder. An ACS is developed to estimate the matching similarity between the test degradation curve and the training degradation curve. The proposed scheme captures the time-varying multimodal degradation behavior and provides libraries of health curves with multiple degradation patterns. The designed scheme is evaluated on the C-MAPSS dataset and the results illustrate the competitiveness and effectiveness of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
nicheng发布了新的文献求助10
1秒前
bkagyin应助靖123456采纳,获得10
1秒前
1秒前
ding应助pigff采纳,获得10
2秒前
笑点低的白莲完成签到,获得积分10
2秒前
小皮猪完成签到,获得积分10
2秒前
3秒前
3秒前
3秒前
4秒前
4秒前
4秒前
5秒前
5秒前
Robbins发布了新的文献求助10
6秒前
烟花应助香饽饽采纳,获得10
6秒前
7秒前
亦i发布了新的文献求助10
8秒前
小二郎应助小罗在无锡采纳,获得10
9秒前
三十三发布了新的文献求助10
10秒前
10秒前
10秒前
10秒前
薄荷味发布了新的文献求助10
11秒前
天天快乐应助贪玩的刚采纳,获得10
11秒前
阿旭发布了新的文献求助10
12秒前
CodeCraft应助chen采纳,获得10
12秒前
xiuxiu发布了新的文献求助10
12秒前
等意送汝完成签到 ,获得积分10
13秒前
13秒前
拼搏听寒完成签到,获得积分10
13秒前
小缓发布了新的文献求助10
14秒前
汉堡包应助霸气梦菲采纳,获得10
15秒前
传奇3应助33采纳,获得30
15秒前
MoJJ发布了新的文献求助200
16秒前
烟花应助凉拌折耳根采纳,获得10
16秒前
拼搏听寒发布了新的文献求助10
17秒前
17秒前
18秒前
18秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Devlopment of GaN Resonant Cavity LEDs 666
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3455021
求助须知:如何正确求助?哪些是违规求助? 3050304
关于积分的说明 9020908
捐赠科研通 2738923
什么是DOI,文献DOI怎么找? 1502343
科研通“疑难数据库(出版商)”最低求助积分说明 694500
邀请新用户注册赠送积分活动 693191