Image denoising using adaptive bi-dimensional stochastic resonance system

计算机科学 随机共振 噪音(视频) 中值滤波器 非线性滤波器 非线性系统 滤波器(信号处理) 人工智能 自适应滤波器 峰值信噪比 图像处理 算法 图像(数学) 计算机视觉 滤波器设计 物理 量子力学
作者
Shan Wang,Pingjuan Niu,Yong Li,Jiangkai Jia,Shuai Wang,Huichao Li,Bo Sun,Bin Zheng,Sun Xi-min
出处
期刊:Ferroelectrics [Taylor & Francis]
卷期号:609 (1): 148-157 被引量:1
标识
DOI:10.1080/00150193.2023.2198947
摘要

AbstractUsing stochastic resonance (SR) mechanism, the output signal can be enhanced by adding noise to the nonlinear system. Therefore, an image denoising algorithm based on adaptive bi-dimensional stochastic resonance (ABSR) is proposed in this paper. Firstly, the image is sampled as a bi-dimensional signal, and an adaptive bi-dimensional dynamic nonlinear system model is constructed. The peak signal-to-noise ratio (PSNR) and structural similarity (SSIM) of the output image are used as the double evaluation model of the adaptive system, and the optimal parameters of the model are automatically obtained by adjusting the parameters of the dynamic nonlinear system using the reverse positioning method. Compared with the traditional mean filter, median filter and one-dimensional stochastic resonance, the image restoration effect of dynamic adaptive bi-dimensional stochastic resonance is more closer to the original image, and the histogram, PSNR and SSIM of the output image are also significantly better than the other three methods. The results show that dynamic adaptive bi-dimensional stochastic resonance has better denoising effect and better robustness to the change of noise intensity in image processing.Keywords: Image denoisingstochastic resonancebi-dimensional system AcknowledgementsThe authors would like to thank foreign friends for proofreading the manuscript. The authors are also grateful to the anonymous reviewers for their valuable comments and suggestions.Additional informationFundingThis research was supported by [National Natural Science Foundation of China #1] under Grant [number 11672207]; [Tianjin Natural Science Foundation of China] under Grant [number 17JCYBJC15700]; and [research and application of key technologies of intelligent robot process automation] under Grant [number 1500/2022-72002B].
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大聪明完成签到,获得积分10
刚刚
研友_VZG7GZ应助积极灵薇采纳,获得10
1秒前
JamesPei应助无限飞丹采纳,获得10
1秒前
独特乘云发布了新的文献求助10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
科目三应助科研通管家采纳,获得10
1秒前
酷波er应助科研通管家采纳,获得10
1秒前
科研通AI5应助科研通管家采纳,获得10
1秒前
搜集达人应助科研通管家采纳,获得10
1秒前
CAOHOU应助科研通管家采纳,获得10
2秒前
2秒前
CodeCraft应助科研通管家采纳,获得10
2秒前
CodeCraft应助科研通管家采纳,获得10
2秒前
Noyo应助科研通管家采纳,获得10
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
tramp应助科研通管家采纳,获得10
2秒前
英俊的铭应助科研通管家采纳,获得10
2秒前
tramp应助科研通管家采纳,获得10
2秒前
英姑应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
3秒前
领导范儿应助Nozomi采纳,获得10
5秒前
小马甲应助YJ888采纳,获得10
5秒前
香蕉觅云应助jialiu采纳,获得10
5秒前
cosmos完成签到,获得积分10
6秒前
大个应助独特乘云采纳,获得10
7秒前
7秒前
小晓发布了新的文献求助10
7秒前
wonder123发布了新的文献求助10
9秒前
老实起哞完成签到,获得积分10
9秒前
11秒前
12秒前
gsj发布了新的文献求助10
13秒前
14秒前
所所应助wonder123采纳,获得10
14秒前
15秒前
15秒前
15秒前
田様应助忆茶戏采纳,获得10
15秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989444
求助须知:如何正确求助?哪些是违规求助? 3531531
关于积分的说明 11254250
捐赠科研通 3270191
什么是DOI,文献DOI怎么找? 1804901
邀请新用户注册赠送积分活动 882105
科研通“疑难数据库(出版商)”最低求助积分说明 809174