计算机科学
目标检测
变压器
卷积神经网络
人工智能
探测器
计算机视觉
编码(集合论)
模式识别(心理学)
工程类
电信
集合(抽象数据类型)
电压
电气工程
程序设计语言
作者
Ming Kang,Chee-Ming Ting,Fung Fung Ting,Raphaël Phan
出处
期刊:Cornell University - arXiv
日期:2023-01-01
被引量:1
标识
DOI:10.48550/arxiv.2306.14590
摘要
Blood cell detection is a typical small-scale object detection problem in computer vision. In this paper, we propose a CST-YOLO model for blood cell detection based on YOLOv7 architecture and enhance it with the CNN-Swin Transformer (CST), which is a new attempt at CNN-Transformer fusion. We also introduce three other useful modules: Weighted Efficient Layer Aggregation Networks (W-ELAN), Multiscale Channel Split (MCS), and Concatenate Convolutional Layers (CatConv) in our CST-YOLO to improve small-scale object detection precision. Experimental results show that the proposed CST-YOLO achieves 92.7, 95.6, and 91.1 mAP@0.5 respectively on three blood cell datasets, outperforming state-of-the-art object detectors, e.g., YOLOv5 and YOLOv7. Our code is available at https://github.com/mkang315/CST-YOLO.
科研通智能强力驱动
Strongly Powered by AbleSci AI