Edge Guided GANs With Multi-Scale Contrastive Learning for Semantic Image Synthesis

计算机科学 比例(比率) 人工智能 边缘检测 计算机视觉 模式识别(心理学) 图像(数学) GSM演进的增强数据速率 自然语言处理 图像处理 量子力学 物理
作者
Hao Tang,Guolei Sun,Nicu Sebe,Luc Van Gool
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号:45 (12): 14435-14452 被引量:6
标识
DOI:10.1109/tpami.2023.3298721
摘要

We propose a novel e dge guided g enerative a dversarial n etwork with c ontrastive learning (ECGAN) for the challenging semantic image synthesis task. Although considerable improvements have been achieved by the community in the recent period, the quality of synthesized images is far from satisfactory due to three largely unresolved challenges. 1) The semantic labels do not provide detailed structural information, making it challenging to synthesize local details and structures; 2) The widely adopted CNN operations such as convolution, down-sampling, and normalization usually cause spatial resolution loss and thus cannot fully preserve the original semantic information, leading to semantically inconsistent results (e.g., missing small objects); 3) Existing semantic image synthesis methods focus on modeling "local" semantic information from a single input semantic layout. However, they ignore "global" semantic information of multiple input semantic layouts, i.e., semantic cross-relations between pixels across different input layouts. To tackle 1), we propose to use the edge as an intermediate representation which is further adopted to guide image generation via a proposed attention guided edge transfer module. Edge information is produced by a convolutional generator and introduces detailed structure information. To tackle 2), we design an effective module to selectively highlight class-dependent feature maps according to the original semantic layout to preserve the semantic information. To tackle 3), inspired by current methods in contrastive learning, we propose a novel contrastive learning method, which aims to enforce pixel embeddings belonging to the same semantic class to generate more similar image content than those from different classes. We further propose a novel multi-scale contrastive learning method that aims to push same-class features from different scales closer together being able to capture more semantic relations by explicitly exploring the structures of labeled pixels from multiple input semantic layouts from different scales. Experiments on three challenging datasets show that our methods achieve significantly better results than state-of-the-art approaches. The source code is available at https://github.com/Ha0Tang/ECGAN .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助康宁采纳,获得10
刚刚
罗小黑echo完成签到 ,获得积分10
刚刚
ddrose发布了新的文献求助10
刚刚
马铃薯淀粉完成签到,获得积分10
刚刚
清秀黎昕完成签到,获得积分10
刚刚
刚刚
1秒前
wy完成签到,获得积分10
1秒前
1秒前
可乐加冰完成签到,获得积分10
2秒前
jg发布了新的文献求助10
2秒前
2秒前
pK完成签到 ,获得积分10
3秒前
chen完成签到,获得积分10
4秒前
5秒前
曹翔豪发布了新的文献求助10
6秒前
激动的访波完成签到,获得积分10
7秒前
trz817394发布了新的文献求助10
7秒前
呆鸥发布了新的文献求助30
8秒前
nuomi完成签到,获得积分10
8秒前
裴123发布了新的文献求助10
8秒前
乐乐应助ddrose采纳,获得10
9秒前
Li应助three采纳,获得10
9秒前
15966014069完成签到,获得积分10
9秒前
BLUZ完成签到,获得积分10
9秒前
10秒前
张小兔啊完成签到,获得积分10
10秒前
Bright24发布了新的文献求助10
11秒前
研友_Lmb15n完成签到,获得积分10
11秒前
甘甘发布了新的文献求助30
11秒前
呆萌的访冬完成签到,获得积分20
12秒前
Hello应助qia采纳,获得10
12秒前
无花果应助小东西725采纳,获得10
12秒前
12秒前
橘子小姐完成签到,获得积分10
13秒前
13秒前
14秒前
高贵咖啡发布了新的文献求助30
15秒前
晗晗完成签到,获得积分10
15秒前
nuomi发布了新的文献求助10
15秒前
高分求助中
Comprehensive Chirality Second Edition 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
Air Transportation A Global Management Perspective 9th Edition 700
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4978009
求助须知:如何正确求助?哪些是违规求助? 4231065
关于积分的说明 13178283
捐赠科研通 4021754
什么是DOI,文献DOI怎么找? 2200400
邀请新用户注册赠送积分活动 1212909
关于科研通互助平台的介绍 1129176