已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Edge Guided GANs With Multi-Scale Contrastive Learning for Semantic Image Synthesis

计算机科学 比例(比率) 人工智能 边缘检测 计算机视觉 模式识别(心理学) 图像(数学) GSM演进的增强数据速率 自然语言处理 图像处理 量子力学 物理
作者
Hao Tang,Guolei Sun,Nicu Sebe,Luc Van Gool
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号:45 (12): 14435-14452 被引量:6
标识
DOI:10.1109/tpami.2023.3298721
摘要

We propose a novel e dge guided g enerative a dversarial n etwork with c ontrastive learning (ECGAN) for the challenging semantic image synthesis task. Although considerable improvements have been achieved by the community in the recent period, the quality of synthesized images is far from satisfactory due to three largely unresolved challenges. 1) The semantic labels do not provide detailed structural information, making it challenging to synthesize local details and structures; 2) The widely adopted CNN operations such as convolution, down-sampling, and normalization usually cause spatial resolution loss and thus cannot fully preserve the original semantic information, leading to semantically inconsistent results (e.g., missing small objects); 3) Existing semantic image synthesis methods focus on modeling "local" semantic information from a single input semantic layout. However, they ignore "global" semantic information of multiple input semantic layouts, i.e., semantic cross-relations between pixels across different input layouts. To tackle 1), we propose to use the edge as an intermediate representation which is further adopted to guide image generation via a proposed attention guided edge transfer module. Edge information is produced by a convolutional generator and introduces detailed structure information. To tackle 2), we design an effective module to selectively highlight class-dependent feature maps according to the original semantic layout to preserve the semantic information. To tackle 3), inspired by current methods in contrastive learning, we propose a novel contrastive learning method, which aims to enforce pixel embeddings belonging to the same semantic class to generate more similar image content than those from different classes. We further propose a novel multi-scale contrastive learning method that aims to push same-class features from different scales closer together being able to capture more semantic relations by explicitly exploring the structures of labeled pixels from multiple input semantic layouts from different scales. Experiments on three challenging datasets show that our methods achieve significantly better results than state-of-the-art approaches. The source code is available at https://github.com/Ha0Tang/ECGAN .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
好运常伴完成签到,获得积分20
3秒前
解语花发布了新的文献求助10
4秒前
秭归子归发布了新的文献求助10
7秒前
科研菜鸡完成签到,获得积分10
10秒前
12秒前
雪白傲蕾完成签到,获得积分20
12秒前
15秒前
量子星尘发布了新的文献求助10
16秒前
子里关注了科研通微信公众号
16秒前
17秒前
雪白傲蕾发布了新的文献求助10
18秒前
ZQ发布了新的文献求助10
24秒前
27秒前
CAOHOU应助秭归子归采纳,获得10
27秒前
27秒前
QQQ完成签到,获得积分10
30秒前
30秒前
30秒前
31秒前
wackykao完成签到,获得积分10
32秒前
34秒前
5annnn发布了新的文献求助10
35秒前
36秒前
赘婿应助jiafang采纳,获得10
36秒前
36秒前
隐形曼青应助肖礼成采纳,获得10
36秒前
37秒前
等待的花生完成签到,获得积分10
37秒前
丘比特应助糟糕的鹏飞采纳,获得10
39秒前
xxttt发布了新的文献求助10
41秒前
41秒前
LLL关闭了LLL文献求助
42秒前
lxd完成签到 ,获得积分10
45秒前
50秒前
山语发布了新的文献求助10
55秒前
跳跃的迎荷完成签到 ,获得积分10
55秒前
56秒前
一只小BSS发布了新的文献求助10
56秒前
星辰大海应助小远采纳,获得10
58秒前
21完成签到 ,获得积分10
58秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
宽量程高线性度柔性压力传感器的逆向设计 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3980612
求助须知:如何正确求助?哪些是违规求助? 3524500
关于积分的说明 11221687
捐赠科研通 3261917
什么是DOI,文献DOI怎么找? 1800975
邀请新用户注册赠送积分活动 879568
科研通“疑难数据库(出版商)”最低求助积分说明 807320