Edge Guided GANs With Multi-Scale Contrastive Learning for Semantic Image Synthesis

计算机科学 比例(比率) 人工智能 边缘检测 计算机视觉 模式识别(心理学) 图像(数学) GSM演进的增强数据速率 自然语言处理 图像处理 量子力学 物理
作者
Hao Tang,Guolei Sun,Nicu Sebe,Luc Van Gool
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:45 (12): 14435-14452 被引量:6
标识
DOI:10.1109/tpami.2023.3298721
摘要

We propose a novel e dge guided g enerative a dversarial n etwork with c ontrastive learning (ECGAN) for the challenging semantic image synthesis task. Although considerable improvements have been achieved by the community in the recent period, the quality of synthesized images is far from satisfactory due to three largely unresolved challenges. 1) The semantic labels do not provide detailed structural information, making it challenging to synthesize local details and structures; 2) The widely adopted CNN operations such as convolution, down-sampling, and normalization usually cause spatial resolution loss and thus cannot fully preserve the original semantic information, leading to semantically inconsistent results (e.g., missing small objects); 3) Existing semantic image synthesis methods focus on modeling "local" semantic information from a single input semantic layout. However, they ignore "global" semantic information of multiple input semantic layouts, i.e., semantic cross-relations between pixels across different input layouts. To tackle 1), we propose to use the edge as an intermediate representation which is further adopted to guide image generation via a proposed attention guided edge transfer module. Edge information is produced by a convolutional generator and introduces detailed structure information. To tackle 2), we design an effective module to selectively highlight class-dependent feature maps according to the original semantic layout to preserve the semantic information. To tackle 3), inspired by current methods in contrastive learning, we propose a novel contrastive learning method, which aims to enforce pixel embeddings belonging to the same semantic class to generate more similar image content than those from different classes. We further propose a novel multi-scale contrastive learning method that aims to push same-class features from different scales closer together being able to capture more semantic relations by explicitly exploring the structures of labeled pixels from multiple input semantic layouts from different scales. Experiments on three challenging datasets show that our methods achieve significantly better results than state-of-the-art approaches. The source code is available at https://github.com/Ha0Tang/ECGAN .

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
无情妙菡完成签到,获得积分10
2秒前
3秒前
白凝海发布了新的文献求助10
3秒前
动感农夫发布了新的文献求助10
4秒前
minkeyantong完成签到 ,获得积分10
4秒前
财路通八方完成签到 ,获得积分10
4秒前
liudan发布了新的文献求助10
4秒前
充电宝应助烟酒不离生采纳,获得10
6秒前
久念发布了新的文献求助10
6秒前
LTT发布了新的文献求助10
7秒前
8秒前
CodeCraft应助无心的怜南采纳,获得10
8秒前
领导范儿应助slience采纳,获得10
8秒前
9秒前
爆米花应助恩恩天天开心采纳,获得10
10秒前
木春完成签到,获得积分10
11秒前
Choccy关注了科研通微信公众号
12秒前
12秒前
NexusExplorer应助zxn课题组采纳,获得10
12秒前
pxr完成签到,获得积分10
12秒前
桐桐应助浮生之梦采纳,获得10
13秒前
乱世完成签到,获得积分10
14秒前
北北完成签到,获得积分10
15秒前
15秒前
量子星尘发布了新的文献求助10
16秒前
医隐完成签到,获得积分10
16秒前
酷波er应助李霞采纳,获得10
16秒前
16秒前
与落发布了新的文献求助10
17秒前
朱小燕发布了新的文献求助10
17秒前
slience完成签到,获得积分20
18秒前
英姑应助崔龙锋采纳,获得10
18秒前
18秒前
以露华浓发布了新的文献求助10
19秒前
努力生活的小柴完成签到,获得积分10
19秒前
19秒前
19秒前
泛泛之交完成签到,获得积分10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5736345
求助须知:如何正确求助?哪些是违规求助? 5365448
关于积分的说明 15332933
捐赠科研通 4880224
什么是DOI,文献DOI怎么找? 2622747
邀请新用户注册赠送积分活动 1571635
关于科研通互助平台的介绍 1528489