Edge Guided GANs With Multi-Scale Contrastive Learning for Semantic Image Synthesis

计算机科学 人工智能 情报检索 自然语言处理
作者
Hao Tang,Guolei Sun,Nicu Sebe,Luc Van Gool
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:45 (12): 14435-14452 被引量:1
标识
DOI:10.1109/tpami.2023.3298721
摘要

We propose a novel e dge guided g enerative a dversarial n etwork with c ontrastive learning (ECGAN) for the challenging semantic image synthesis task. Although considerable improvements have been achieved by the community in the recent period, the quality of synthesized images is far from satisfactory due to three largely unresolved challenges. 1) The semantic labels do not provide detailed structural information, making it challenging to synthesize local details and structures; 2) The widely adopted CNN operations such as convolution, down-sampling, and normalization usually cause spatial resolution loss and thus cannot fully preserve the original semantic information, leading to semantically inconsistent results (e.g., missing small objects); 3) Existing semantic image synthesis methods focus on modeling “local” semantic information from a single input semantic layout. However, they ignore “global” semantic information of multiple input semantic layouts, i.e., semantic cross-relations between pixels across different input layouts. To tackle 1), we propose to use the edge as an intermediate representation which is further adopted to guide image generation via a proposed attention guided edge transfer module. Edge information is produced by a convolutional generator and introduces detailed structure information. To tackle 2), we design an effective module to selectively highlight class-dependent feature maps according to the original semantic layout to preserve the semantic information. To tackle 3), inspired by current methods in contrastive learning, we propose a novel contrastive learning method, which aims to enforce pixel embeddings belonging to the same semantic class to generate more similar image content than those from different classes. We further propose a novel multi-scale contrastive learning method that aims to push same-class features from different scales closer together being able to capture more semantic relations by explicitly exploring the structures of labeled pixels from multiple input semantic layouts from different scales. Experiments on three challenging datasets show that our methods achieve significantly better results than state-of-the-art approaches. The source code is available at https://github.com/Ha0Tang/ECGAN .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
爆米花应助特兰克斯采纳,获得10
1秒前
2秒前
3秒前
3秒前
4秒前
葛辉辉发布了新的文献求助10
4秒前
4秒前
共享精神应助baobaonaixi采纳,获得10
4秒前
半颗橙子发布了新的文献求助10
4秒前
5秒前
shimmery完成签到,获得积分10
6秒前
咔咔完成签到 ,获得积分20
6秒前
superworm1发布了新的文献求助10
6秒前
6秒前
hy发布了新的文献求助10
6秒前
舒心赛凤完成签到,获得积分10
6秒前
菠菜菜str完成签到,获得积分10
8秒前
悟空发布了新的文献求助10
8秒前
优雅山柏发布了新的文献求助10
8秒前
8秒前
junc发布了新的文献求助20
8秒前
memory发布了新的文献求助10
8秒前
罗曼长情雪兰完成签到,获得积分10
9秒前
酷炫板凳发布了新的文献求助10
9秒前
Sue发布了新的文献求助10
9秒前
10秒前
张先森完成签到,获得积分10
10秒前
Orange应助饭小心采纳,获得10
10秒前
jason完成签到,获得积分10
10秒前
10秒前
10秒前
糖糖完成签到,获得积分10
11秒前
小二郎应助幸福胡萝卜采纳,获得10
11秒前
11秒前
亵渎完成签到,获得积分10
11秒前
mc1220完成签到,获得积分10
12秒前
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762