光电流
兴奋剂
赤铁矿
材料科学
表面状态
费米能级
分解水
化学工程
化学
光电子学
光催化
冶金
曲面(拓扑)
催化作用
生物化学
量子力学
几何学
物理
工程类
电子
数学
作者
Periyasamy Anushkkaran,Mahadeo A. Mahadik,Weon‐Sik Chae,Hyun Hwi Lee,Sun Hee Choi,Jum Suk Jang
标识
DOI:10.1016/j.cej.2023.144998
摘要
Hematite (α-Fe2O3) is a potential photoanode material for photoelectrochemical (PEC) water splitting; nevertheless, its PEC performance is constrained by substantial bulk and surface charge recombination rates. Herein, the effect of in-situ Zr/Hf dual-ion doping and the MoO3 hole transport layer (HTL) on regulating the surface states of α-Fe2O3 photoanodes for effective water oxidation is investigated. The co-doping improves bulk properties by enhancing the electrical conductivity, thereby facilitating hole transfer via intermediate surface states (i-SS). Furthermore, the MoO3 HTL passivates the recombination surface states (r-SS), thus alleviating the Fermi level pinning, resulting in an improved open-circuit photovoltage. As a result, a novel Zr/Hf-HT:MoO3 photoanode attains a photocurrent density of 2.34 mA cm−2 at 1.23 V vs. RHE (1.23 VRHE), which is 123% higher than that of Bare-HT. The Zr/Hf-HT:MoO3 photoanode achieves 86 and 61.3% of surface charge separation and charge transfer efficiencies at 1.23 VRHE, respectively, representing 26 and 100% enhancements over those of Bare-HT. Lastly, the FeNi(OH)x cocatalyst coated Zr/Hf-HT:MoO3 photoanode reaches a photocurrent density of 2.62 mA cm−2 at 1.23 VRHE with 98% stability and generates 47.8 and 22 μmol h−1 of H2 and O2 gases, respectively.
科研通智能强力驱动
Strongly Powered by AbleSci AI