Spatial-spectral attention-enhanced Res-3D-OctConv for corn and weed identification utilizing hyperspectral imaging and deep learning

高光谱成像 人工智能 模式识别(心理学) 主成分分析 计算机科学 残余物 卷积神经网络 冗余(工程) 空间分析 特征提取 深度学习 支持向量机 数学 算法 统计 操作系统
作者
Zhihua Diao,Peiliang Guo,Baohua Zhang,Jiaonan Yan,Zhendong He,Suna Zhao,Chunjiang Zhao,Jingcheng Zhang
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:212: 108092-108092 被引量:12
标识
DOI:10.1016/j.compag.2023.108092
摘要

Corn production is an important basis to ensure the world food security, and weeds in the field will cause corn production decline. Therefore, in order to quickly recognize corn and weed in the field, a model was proposed by combining hyperspectral image with deep learning method. However, there are some problems in hyperspectral image, such as high redundancy of adjacent spectra and insufficient feature information extraction. In order to solve the above problems, the four principal components based on principal component analysis (PCA) were firstly extracted in this paper, so as to decrease the information redundancy between adjacent spectra. Secondly, the residual three-dimensional octave convolution (Res-3D-OctConv) was used to excavate the spatial information from the frequency components, while taking into account the spectral information. Finally, spatial and spectral attention models were introduced to highlight important spatial information and spectral information. At the same time, the spatial information and spectral information was integrated by cross fusion. Experimental results show that the recognition accuracy of the proposed model is 98.56 %, which is 8.65 % and 10.20 % higher than that of k-nearest neighbor (KNN) and support vector machine (SVM) respectively. The recognition result of the proposed model is further compared with that of 3D residual network (3D-ResNet) and 3D convolutional neural network (3D-CNN), and the recognition precision of the proposed model in this paper is increased by 1.40 % and 1.02 % compared with 3D-CNN and 3D-ResNet, respectively. The results show that the proposed model can better recognize the hyperspectral images of corn and weed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
不着四六的岁月完成签到,获得积分10
刚刚
刚刚
刚刚
善学以致用应助kara采纳,获得10
1秒前
郝好月完成签到,获得积分10
1秒前
yss发布了新的文献求助10
1秒前
听听完成签到,获得积分10
2秒前
2秒前
搞怪书兰完成签到,获得积分10
2秒前
xpqiu完成签到,获得积分10
2秒前
隐形曼青应助一个小胖子采纳,获得10
2秒前
3秒前
研友_8KX15L发布了新的文献求助10
3秒前
4秒前
wu发布了新的文献求助10
4秒前
4秒前
dudu发布了新的文献求助10
4秒前
Hello应助gzsy采纳,获得10
5秒前
阳光的静白完成签到,获得积分10
7秒前
Questa_Qin完成签到,获得积分10
7秒前
7秒前
无限莛完成签到,获得积分10
8秒前
huiyuan完成签到,获得积分10
9秒前
Cyrus完成签到 ,获得积分10
9秒前
丽莉完成签到,获得积分20
9秒前
紫了葡萄发布了新的文献求助10
10秒前
xsy完成签到 ,获得积分10
10秒前
10秒前
yang发布了新的文献求助30
10秒前
yuyuyuyu应助好运来采纳,获得10
10秒前
打打应助Sunny采纳,获得10
11秒前
SJW完成签到,获得积分10
11秒前
医学僧也想成为科主任完成签到,获得积分10
11秒前
诗图完成签到,获得积分10
12秒前
kannakaco完成签到,获得积分10
12秒前
熊猫晶晶完成签到,获得积分10
12秒前
酷酷妙梦完成签到,获得积分10
12秒前
xuxingjie完成签到,获得积分10
13秒前
1821977451完成签到,获得积分10
13秒前
yss完成签到,获得积分10
13秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Essentials of Performance Analysis in Sport 500
Measure Mean Linear Intercept 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3729529
求助须知:如何正确求助?哪些是违规求助? 3274563
关于积分的说明 9986780
捐赠科研通 2989812
什么是DOI,文献DOI怎么找? 1640767
邀请新用户注册赠送积分活动 779348
科研通“疑难数据库(出版商)”最低求助积分说明 748196