Skeletal muscle gauge prediction by a machine learning model in patients with colorectal cancer

医学 肌萎缩 结直肠癌 接收机工作特性 试验装置 人工智能 癌症 内科学 机器学习 算法 数学 计算机科学
作者
Jun Young Lim,Young Min Kim,Hye Sun Lee,Jeonghyun Kang
出处
期刊:Nutrition [Elsevier BV]
卷期号:115: 112146-112146 被引量:1
标识
DOI:10.1016/j.nut.2023.112146
摘要

Skeletal muscle gauge (SMG) was recently introduced as an imaging indicator of sarcopenia. Computed tomography is essential for measuring SMG; thus, the use of SMG is limited to patients who undergo computed tomography. We aimed to develop a machine learning algorithm using clinical and inflammatory markers to predict SMG in patients with colorectal cancer.The least absolute shrinkage and selection operator regression model was applied for variable selection and predictive signature building in the training set. The predictive accuracy of the least absolute shrinkage and selection operator model, defined as linear predictor (LP)-SMG, was compared using the area under the receiver operating characteristic curve and decision curve analysis in the test set.A total of 1094 patients with colorectal cancer were enrolled and randomly categorized into training (n = 656) and test (n = 438) sets. Low SMG was identified in 142 (21.6%) and 90 (20.5%) patients in the training and test sets, respectively. According to multivariable analysis of the test sets, LP-SMG was identified as an independent predictor of low SMG (odds ratio = 1329.431; 95% CI, 271.684-7667.996; P < .001). Its predictive performance was similar in the training and test sets (area under the receiver operating characteristic curve = 0.846 versus 0.869; P = .427). In the test set, LP-SMG had better outcomes in predicting SMG than single clinical variables, such as sex, height, weight, and hemoglobin.LP-SMG had superior performance than single variables in predicting low SMG. This machine learning model can be used as a screening tool to detect sarcopenic status without using computed tomography during the treatment period.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
BERT完成签到,获得积分10
刚刚
刚刚
开心初雪完成签到,获得积分10
刚刚
李健的小迷弟应助666JACS采纳,获得10
1秒前
Jessica发布了新的文献求助10
1秒前
1秒前
生椰拿铁完成签到,获得积分10
2秒前
无奈母鸡完成签到,获得积分10
2秒前
烟花应助七七采纳,获得10
3秒前
科研通AI6应助jyyg采纳,获得10
3秒前
3秒前
MZCCaiajie完成签到,获得积分10
3秒前
3秒前
4秒前
jhz发布了新的文献求助10
4秒前
lollonglol完成签到,获得积分10
4秒前
朝歌完成签到,获得积分10
4秒前
5秒前
5秒前
5秒前
火火完成签到 ,获得积分10
6秒前
干饭完成签到,获得积分10
6秒前
亲亲紫荆完成签到,获得积分10
6秒前
popo完成签到,获得积分10
6秒前
半生瓜发布了新的文献求助10
6秒前
Russula_Chu发布了新的文献求助200
6秒前
勤劳雁应助无奈母鸡采纳,获得10
6秒前
wyx发布了新的文献求助10
7秒前
7秒前
111发布了新的文献求助10
8秒前
zccvbn完成签到,获得积分10
8秒前
崔昕雨发布了新的文献求助10
8秒前
8秒前
额度完成签到,获得积分10
9秒前
Rui完成签到,获得积分10
9秒前
搜集达人应助小黑子fanfan采纳,获得10
9秒前
紫瓜发布了新的文献求助10
9秒前
9秒前
flow完成签到,获得积分10
9秒前
Ding发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4600326
求助须知:如何正确求助?哪些是违规求助? 4010520
关于积分的说明 12416659
捐赠科研通 3690261
什么是DOI,文献DOI怎么找? 2034228
邀请新用户注册赠送积分活动 1067656
科研通“疑难数据库(出版商)”最低求助积分说明 952475