Skeletal muscle gauge prediction by a machine learning model in patients with colorectal cancer

医学 肌萎缩 结直肠癌 接收机工作特性 试验装置 人工智能 癌症 内科学 机器学习 算法 数学 计算机科学
作者
Jun Young Lim,Young Min Kim,Hye Sun Lee,Jeonghyun Kang
出处
期刊:Nutrition [Elsevier]
卷期号:115: 112146-112146 被引量:1
标识
DOI:10.1016/j.nut.2023.112146
摘要

Skeletal muscle gauge (SMG) was recently introduced as an imaging indicator of sarcopenia. Computed tomography is essential for measuring SMG; thus, the use of SMG is limited to patients who undergo computed tomography. We aimed to develop a machine learning algorithm using clinical and inflammatory markers to predict SMG in patients with colorectal cancer.The least absolute shrinkage and selection operator regression model was applied for variable selection and predictive signature building in the training set. The predictive accuracy of the least absolute shrinkage and selection operator model, defined as linear predictor (LP)-SMG, was compared using the area under the receiver operating characteristic curve and decision curve analysis in the test set.A total of 1094 patients with colorectal cancer were enrolled and randomly categorized into training (n = 656) and test (n = 438) sets. Low SMG was identified in 142 (21.6%) and 90 (20.5%) patients in the training and test sets, respectively. According to multivariable analysis of the test sets, LP-SMG was identified as an independent predictor of low SMG (odds ratio = 1329.431; 95% CI, 271.684-7667.996; P < .001). Its predictive performance was similar in the training and test sets (area under the receiver operating characteristic curve = 0.846 versus 0.869; P = .427). In the test set, LP-SMG had better outcomes in predicting SMG than single clinical variables, such as sex, height, weight, and hemoglobin.LP-SMG had superior performance than single variables in predicting low SMG. This machine learning model can be used as a screening tool to detect sarcopenic status without using computed tomography during the treatment period.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
蓝天应助Yyuan采纳,获得10
刚刚
1秒前
1秒前
领导范儿应助又又岩采纳,获得10
2秒前
俗人完成签到,获得积分10
2秒前
星夕发布了新的文献求助10
3秒前
qqqq发布了新的文献求助10
3秒前
4秒前
4秒前
liu发布了新的文献求助10
5秒前
76发布了新的文献求助10
6秒前
唠叨的凌雪完成签到,获得积分10
6秒前
rebubu应助高傲的小飞龙采纳,获得10
6秒前
6秒前
菲子笑发布了新的文献求助10
7秒前
单身的丹烟完成签到 ,获得积分10
7秒前
科研通AI6应助嗯嗯采纳,获得30
7秒前
Newt完成签到,获得积分10
7秒前
7秒前
彭于晏完成签到,获得积分0
8秒前
8秒前
un完成签到,获得积分10
8秒前
riyamao完成签到,获得积分10
9秒前
丘比特应助76采纳,获得10
11秒前
11秒前
shuo完成签到,获得积分10
11秒前
小羊完成签到,获得积分10
11秒前
Lin完成签到,获得积分10
12秒前
Rosemarry发布了新的文献求助10
13秒前
13秒前
求助人员发布了新的文献求助20
14秒前
123发布了新的文献求助10
14秒前
二猫完成签到,获得积分10
14秒前
16秒前
Jasper应助aluan采纳,获得10
16秒前
炙热的南霜完成签到 ,获得积分10
16秒前
Hello应助fanfan采纳,获得10
16秒前
16秒前
冷傲书萱发布了新的文献求助10
17秒前
筱淌完成签到,获得积分10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Chemistry and Biochemistry: Research Progress Vol. 7 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5684108
求助须知:如何正确求助?哪些是违规求助? 5035205
关于积分的说明 15183583
捐赠科研通 4843435
什么是DOI,文献DOI怎么找? 2596688
邀请新用户注册赠送积分活动 1549396
关于科研通互助平台的介绍 1507893