清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Skeletal muscle gauge prediction by a machine learning model in patients with colorectal cancer

医学 肌萎缩 结直肠癌 接收机工作特性 试验装置 人工智能 癌症 内科学 机器学习 算法 数学 计算机科学
作者
Jun Young Lim,Young Min Kim,Hye Sun Lee,Jeonghyun Kang
出处
期刊:Nutrition [Elsevier BV]
卷期号:115: 112146-112146 被引量:1
标识
DOI:10.1016/j.nut.2023.112146
摘要

Skeletal muscle gauge (SMG) was recently introduced as an imaging indicator of sarcopenia. Computed tomography is essential for measuring SMG; thus, the use of SMG is limited to patients who undergo computed tomography. We aimed to develop a machine learning algorithm using clinical and inflammatory markers to predict SMG in patients with colorectal cancer.The least absolute shrinkage and selection operator regression model was applied for variable selection and predictive signature building in the training set. The predictive accuracy of the least absolute shrinkage and selection operator model, defined as linear predictor (LP)-SMG, was compared using the area under the receiver operating characteristic curve and decision curve analysis in the test set.A total of 1094 patients with colorectal cancer were enrolled and randomly categorized into training (n = 656) and test (n = 438) sets. Low SMG was identified in 142 (21.6%) and 90 (20.5%) patients in the training and test sets, respectively. According to multivariable analysis of the test sets, LP-SMG was identified as an independent predictor of low SMG (odds ratio = 1329.431; 95% CI, 271.684-7667.996; P < .001). Its predictive performance was similar in the training and test sets (area under the receiver operating characteristic curve = 0.846 versus 0.869; P = .427). In the test set, LP-SMG had better outcomes in predicting SMG than single clinical variables, such as sex, height, weight, and hemoglobin.LP-SMG had superior performance than single variables in predicting low SMG. This machine learning model can be used as a screening tool to detect sarcopenic status without using computed tomography during the treatment period.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
7秒前
cadcae完成签到,获得积分20
22秒前
林文隆完成签到,获得积分10
25秒前
萱棚完成签到 ,获得积分10
45秒前
温暖的蚂蚁完成签到 ,获得积分10
54秒前
希望天下0贩的0应助liudy采纳,获得10
1分钟前
雪流星完成签到 ,获得积分10
1分钟前
1分钟前
飞翔的企鹅完成签到,获得积分10
1分钟前
1分钟前
liudy完成签到,获得积分10
1分钟前
liudy发布了新的文献求助10
1分钟前
1分钟前
1分钟前
2分钟前
玖月完成签到 ,获得积分10
2分钟前
2分钟前
3分钟前
Lucas应助科研通管家采纳,获得10
3分钟前
3分钟前
ChatGPT完成签到,获得积分10
3分钟前
传奇3应助asdf采纳,获得10
3分钟前
3分钟前
naczx完成签到,获得积分0
4分钟前
4分钟前
4分钟前
asdf发布了新的文献求助10
4分钟前
Hello应助hongtao采纳,获得10
5分钟前
我是老大应助yumieer采纳,获得10
6分钟前
6分钟前
yumieer发布了新的文献求助10
6分钟前
yumieer完成签到,获得积分20
6分钟前
wujiwuhui完成签到 ,获得积分10
6分钟前
游鱼完成签到,获得积分10
6分钟前
研友_8y2G0L完成签到,获得积分10
6分钟前
7分钟前
方白秋完成签到,获得积分10
8分钟前
8分钟前
shaonianzu完成签到 ,获得积分10
8分钟前
KINGAZX完成签到 ,获得积分10
8分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965722
求助须知:如何正确求助?哪些是违规求助? 3510967
关于积分的说明 11155723
捐赠科研通 3245436
什么是DOI,文献DOI怎么找? 1792920
邀请新用户注册赠送积分活动 874201
科研通“疑难数据库(出版商)”最低求助积分说明 804229