Skeletal muscle gauge prediction by a machine learning model in patients with colorectal cancer

医学 肌萎缩 结直肠癌 接收机工作特性 试验装置 人工智能 癌症 内科学 机器学习 算法 数学 计算机科学
作者
Jun Young Lim,Young Min Kim,Hye Sun Lee,Jeonghyun Kang
出处
期刊:Nutrition [Elsevier]
卷期号:115: 112146-112146 被引量:1
标识
DOI:10.1016/j.nut.2023.112146
摘要

Skeletal muscle gauge (SMG) was recently introduced as an imaging indicator of sarcopenia. Computed tomography is essential for measuring SMG; thus, the use of SMG is limited to patients who undergo computed tomography. We aimed to develop a machine learning algorithm using clinical and inflammatory markers to predict SMG in patients with colorectal cancer.The least absolute shrinkage and selection operator regression model was applied for variable selection and predictive signature building in the training set. The predictive accuracy of the least absolute shrinkage and selection operator model, defined as linear predictor (LP)-SMG, was compared using the area under the receiver operating characteristic curve and decision curve analysis in the test set.A total of 1094 patients with colorectal cancer were enrolled and randomly categorized into training (n = 656) and test (n = 438) sets. Low SMG was identified in 142 (21.6%) and 90 (20.5%) patients in the training and test sets, respectively. According to multivariable analysis of the test sets, LP-SMG was identified as an independent predictor of low SMG (odds ratio = 1329.431; 95% CI, 271.684-7667.996; P < .001). Its predictive performance was similar in the training and test sets (area under the receiver operating characteristic curve = 0.846 versus 0.869; P = .427). In the test set, LP-SMG had better outcomes in predicting SMG than single clinical variables, such as sex, height, weight, and hemoglobin.LP-SMG had superior performance than single variables in predicting low SMG. This machine learning model can be used as a screening tool to detect sarcopenic status without using computed tomography during the treatment period.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科研通AI2S应助高海龙采纳,获得10
刚刚
充电宝应助zhan采纳,获得10
刚刚
1秒前
独角喵完成签到,获得积分10
1秒前
浮游应助鲤鱼书白采纳,获得10
1秒前
1秒前
马前人完成签到,获得积分20
1秒前
佳佳完成签到,获得积分10
1秒前
galvin完成签到,获得积分10
2秒前
Sara完成签到 ,获得积分10
2秒前
陈一晨111发布了新的文献求助10
2秒前
2秒前
xuan发布了新的文献求助10
3秒前
xuan发布了新的文献求助10
3秒前
xuan发布了新的文献求助10
3秒前
3秒前
xuan发布了新的文献求助10
3秒前
xuan发布了新的文献求助10
3秒前
xuan发布了新的文献求助10
3秒前
xuan发布了新的文献求助10
3秒前
单于灵竹发布了新的文献求助10
4秒前
不来也不去完成签到 ,获得积分10
4秒前
4秒前
Ki完成签到,获得积分10
4秒前
刘锦涛完成签到,获得积分10
4秒前
5秒前
ZMR121121发布了新的文献求助10
5秒前
5秒前
马前人发布了新的文献求助30
6秒前
江十三完成签到,获得积分10
6秒前
6秒前
sunshine完成签到,获得积分10
6秒前
XUXU发布了新的文献求助10
6秒前
笑声像鸭子叫完成签到 ,获得积分10
7秒前
lJH完成签到,获得积分10
7秒前
林深完成签到,获得积分10
7秒前
7秒前
英俊的铭应助小黑马采纳,获得10
7秒前
sf完成签到,获得积分20
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5510526
求助须知:如何正确求助?哪些是违规求助? 4605168
关于积分的说明 14493221
捐赠科研通 4540370
什么是DOI,文献DOI怎么找? 2487953
邀请新用户注册赠送积分活动 1470219
关于科研通互助平台的介绍 1442645