已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Skeletal muscle gauge prediction by a machine learning model in patients with colorectal cancer

医学 肌萎缩 结直肠癌 接收机工作特性 试验装置 人工智能 癌症 内科学 机器学习 算法 数学 计算机科学
作者
Jun Young Lim,Young Min Kim,Hye Sun Lee,Jeonghyun Kang
出处
期刊:Nutrition [Elsevier]
卷期号:115: 112146-112146 被引量:1
标识
DOI:10.1016/j.nut.2023.112146
摘要

Skeletal muscle gauge (SMG) was recently introduced as an imaging indicator of sarcopenia. Computed tomography is essential for measuring SMG; thus, the use of SMG is limited to patients who undergo computed tomography. We aimed to develop a machine learning algorithm using clinical and inflammatory markers to predict SMG in patients with colorectal cancer.The least absolute shrinkage and selection operator regression model was applied for variable selection and predictive signature building in the training set. The predictive accuracy of the least absolute shrinkage and selection operator model, defined as linear predictor (LP)-SMG, was compared using the area under the receiver operating characteristic curve and decision curve analysis in the test set.A total of 1094 patients with colorectal cancer were enrolled and randomly categorized into training (n = 656) and test (n = 438) sets. Low SMG was identified in 142 (21.6%) and 90 (20.5%) patients in the training and test sets, respectively. According to multivariable analysis of the test sets, LP-SMG was identified as an independent predictor of low SMG (odds ratio = 1329.431; 95% CI, 271.684-7667.996; P < .001). Its predictive performance was similar in the training and test sets (area under the receiver operating characteristic curve = 0.846 versus 0.869; P = .427). In the test set, LP-SMG had better outcomes in predicting SMG than single clinical variables, such as sex, height, weight, and hemoglobin.LP-SMG had superior performance than single variables in predicting low SMG. This machine learning model can be used as a screening tool to detect sarcopenic status without using computed tomography during the treatment period.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
郑麻发布了新的文献求助10
刚刚
刚刚
1秒前
深情安青应助不淄采纳,获得10
1秒前
2秒前
梅狸猫不读博完成签到 ,获得积分10
3秒前
3秒前
默默襄完成签到 ,获得积分10
4秒前
情怀应助小虎牙采纳,获得10
4秒前
陆负剑发布了新的文献求助10
4秒前
Wilson发布了新的文献求助10
6秒前
13完成签到,获得积分10
7秒前
7秒前
8秒前
无情的rr完成签到 ,获得积分10
9秒前
10秒前
Hillson完成签到,获得积分10
10秒前
Wilson完成签到,获得积分10
11秒前
12秒前
12秒前
咔咔完成签到,获得积分10
15秒前
吴迪完成签到,获得积分20
16秒前
joker完成签到 ,获得积分0
16秒前
沿途有你完成签到 ,获得积分10
17秒前
VERY发布了新的文献求助10
17秒前
hx完成签到 ,获得积分10
18秒前
小青椒应助sxmt123456789采纳,获得30
19秒前
深情安青应助hancahngxiao采纳,获得10
20秒前
哈哈完成签到 ,获得积分10
20秒前
wanci应助VERY采纳,获得10
22秒前
陈竺完成签到 ,获得积分10
24秒前
25秒前
隐形曼青应助陆负剑采纳,获得10
25秒前
29秒前
29秒前
pywangsmmu92完成签到,获得积分10
30秒前
31秒前
GoodDay发布了新的文献求助30
32秒前
32秒前
动人的向松完成签到 ,获得积分10
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5590251
求助须知:如何正确求助?哪些是违规求助? 4674657
关于积分的说明 14794952
捐赠科研通 4630846
什么是DOI,文献DOI怎么找? 2532648
邀请新用户注册赠送积分活动 1501221
关于科研通互助平台的介绍 1468576