Interpretable Machine Learning in Solid-State Chemistry, with Applications to Perovskites, Spinels, and Rare-Earth Intermetallics: Finding Descriptors Using Decision Trees

人工智能 机器学习 分子描述符 离群值 化学 决策树 特征(语言学) 班级(哲学) 金属间化合物 数量结构-活动关系 计算机科学 语言学 哲学 有机化学 合金
作者
Balaranjan Selvaratnam,Anton O. Oliynyk,Arthur Mar
出处
期刊:Inorganic Chemistry [American Chemical Society]
卷期号:62 (28): 10865-10875 被引量:6
标识
DOI:10.1021/acs.inorgchem.3c01153
摘要

Machine-learning methods have exciting potential to aid materials discovery, but their wider adoption can be hindered by the opaqueness of many models. Even if these models are accurate, the inability to understand the basis for the predictions breeds skepticism. Thus, it is imperative to develop machine-learning models that are explainable and interpretable so that researchers can judge for themselves if the predictions are consistent with their own scientific understanding and chemical insight. In this spirit, the sure independence screening and sparsifying operator (SISSO) method was recently proposed as an effective way to identify the simplest combination of chemical descriptors needed to solve classification and regression problems in materials science. This approach uses domain overlap (DO) as the criterion to find the most informative descriptors in classification problems, but sometimes a low score can be assigned to useful descriptors when there are outliers or when samples belonging to a class are clustered in different regions of the feature space. Here, we present a hypothesis that the performance can be improved by implementing decision trees (DT) instead of DO as the scoring function to find the best descriptors. This modified approach was tested on three important structural classification problems in solid-state chemistry: perovskites, spinels, and rare-earth intermetallics. In all cases, the DT scoring gave better features and significantly improved accuracies of ≥0.91 for the training sets and ≥0.86 for the test sets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
所所应助陈昇采纳,获得10
3秒前
skr完成签到,获得积分10
3秒前
丘比特应助专注背包采纳,获得10
3秒前
丘比特应助默默千亦采纳,获得10
4秒前
木木完成签到,获得积分10
4秒前
scm应助汪惜寒采纳,获得80
5秒前
hahaha完成签到,获得积分10
8秒前
10秒前
难过梦竹发布了新的文献求助60
10秒前
liu完成签到,获得积分10
11秒前
小马甲应助舒心的雪卉采纳,获得10
12秒前
13秒前
英俊的铭应助唧唧采纳,获得10
13秒前
张丹111完成签到,获得积分10
13秒前
figure完成签到 ,获得积分10
14秒前
14秒前
yx20148关注了科研通微信公众号
14秒前
小郭大夫完成签到,获得积分10
17秒前
一种信仰完成签到,获得积分10
18秒前
Hm完成签到,获得积分10
19秒前
20秒前
勤劳的小蜜蜂完成签到 ,获得积分10
20秒前
fanlin完成签到,获得积分0
20秒前
21秒前
24秒前
24秒前
KD发布了新的文献求助10
26秒前
医隐完成签到,获得积分10
26秒前
yudandan@CJLU发布了新的文献求助10
28秒前
29秒前
高求完成签到,获得积分10
29秒前
29秒前
yx20148发布了新的文献求助10
30秒前
一口橙汁完成签到,获得积分10
30秒前
傲娇皮皮虾完成签到 ,获得积分10
32秒前
充电宝应助PZD采纳,获得10
33秒前
萧暖发布了新的文献求助10
34秒前
35秒前
医隐发布了新的文献求助20
35秒前
应飞飞完成签到,获得积分10
37秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952993
求助须知:如何正确求助?哪些是违规求助? 3498423
关于积分的说明 11091766
捐赠科研通 3229049
什么是DOI,文献DOI怎么找? 1785199
邀请新用户注册赠送积分活动 869228
科研通“疑难数据库(出版商)”最低求助积分说明 801411