Equilibrated Zeroth-Order Unrolled Deep Network for Parallel MR Imaging

计算机科学 稳健性(进化) 正规化(语言学) 深度学习 可预测性 算法 人工智能 合成数据 人工神经网络 趋同(经济学) 反向传播 数学 统计 基因 经济 化学 生物化学 经济增长
作者
Zhuo‐Xu Cui,Sen Jia,Jing Cheng,Qingyong Zhu,Yuanyuan Liu,Kankan Zhao,Ziwen Ke,Wenqi Huang,Haifeng Wang,Yanjie Zhu,Leslie Ying,Dong Liang
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:42 (12): 3540-3554 被引量:2
标识
DOI:10.1109/tmi.2023.3293826
摘要

In recent times, model-driven deep learning has evolved an iterative algorithm into a cascade network by replacing the regularizer's first-order information, such as the (sub)gradient or proximal operator, with a network module. This approach offers greater explainability and predictability compared to typical data-driven networks. However, in theory, there is no assurance that a functional regularizer exists whose first-order information matches the substituted network module. This implies that the unrolled network output may not align with the regularization models. Furthermore, there are few established theories that guarantee global convergence and robustness (regularity) of unrolled networks under practical assumptions. To address this gap, we propose a safeguarded methodology for network unrolling. Specifically, for parallel MR imaging, we unroll a zeroth-order algorithm, where the network module serves as a regularizer itself, allowing the network output to be covered by a regularization model. Additionally, inspired by deep equilibrium models, we conduct the unrolled network before backpropagation to converge to a fixed point and then demonstrate that it can tightly approximate the actual MR image. We also prove that the proposed network is robust against noisy interferences if the measurement data contain noise. Finally, numerical experiments indicate that the proposed network consistently outperforms state-of-the-art MRI reconstruction methods, including traditional regularization and unrolled deep learning techniques.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
所所应助honghong采纳,获得10
1秒前
Frank发布了新的文献求助10
1秒前
mingxuan发布了新的文献求助10
3秒前
忧心的硬币应助陈三三采纳,获得30
3秒前
3秒前
荔枝吖发布了新的文献求助10
4秒前
老迟到的向日葵应助金荣采纳,获得50
4秒前
JIAO完成签到,获得积分10
4秒前
如果完成签到 ,获得积分20
4秒前
4秒前
4秒前
5秒前
5秒前
mirayq发布了新的文献求助10
5秒前
SYLH应助失眠青柏采纳,获得10
5秒前
量子星尘发布了新的文献求助30
5秒前
苒柒完成签到,获得积分10
6秒前
在水一方应助行走的土豆采纳,获得10
6秒前
科研通AI2S应助高高采纳,获得10
6秒前
美好黑猫完成签到,获得积分10
6秒前
纯情的天奇完成签到 ,获得积分10
6秒前
asjm发布了新的文献求助10
6秒前
bkagyin应助zz采纳,获得10
6秒前
monoklatt发布了新的文献求助10
6秒前
7秒前
虚心的芹完成签到,获得积分10
8秒前
Akim应助君君采纳,获得20
8秒前
8秒前
小郝发布了新的文献求助10
8秒前
aSTRAL完成签到,获得积分10
9秒前
黄同学发布了新的文献求助10
10秒前
传奇3应助科研小白采纳,获得10
10秒前
无私海之完成签到,获得积分10
10秒前
机智千柳发布了新的文献求助10
11秒前
荔枝吖完成签到,获得积分10
11秒前
tamo发布了新的文献求助10
11秒前
唐小刚完成签到,获得积分10
12秒前
姚慧知完成签到 ,获得积分10
12秒前
七星完成签到,获得积分10
12秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958843
求助须知:如何正确求助?哪些是违规求助? 3505092
关于积分的说明 11122284
捐赠科研通 3236543
什么是DOI,文献DOI怎么找? 1788854
邀请新用户注册赠送积分活动 871424
科研通“疑难数据库(出版商)”最低求助积分说明 802788