Electronic modulation and structural engineering of tetracyanoquinodimethane with enhanced reaction kinetics for aqueous NH4+ storage

四氰基对醌二甲烷 材料科学 电化学 储能 水溶液 化学工程 石墨烯 电极 分子工程 锂(药物) 电解质 纳米技术 化学 分子 有机化学 物理化学 医学 物理 工程类 内分泌学 功率(物理) 量子力学
作者
Panrun Shao,Yunhong Liao,Feng Xu,Chao Yan,Lingqian Ye,Jun Yang
出处
期刊:Journal of Colloid and Interface Science [Elsevier]
卷期号:633: 199-206 被引量:21
标识
DOI:10.1016/j.jcis.2022.11.057
摘要

Lithium-ion batteries (LIBs) have received much attention because of their environmental, financial, and safety concerns. The advantages of aqueous electrochemical energy storage include environmental friendliness and safety, and the development of prepared electrode materials is predicted to alleviate these issues. A redox-active organic compound, 7,7,8,8‑tetracyanoquinodimethane (TCNQ), is a suitable electrode for aqueous batteries. In this work, the porous and electronic interconnected structure of TCNQ is designed by electronic modulation and structure engineering. With the reduced graphene oxide (rGO) in situ homogeneous loading TCNQ by a one-step facile approach, the exquisite architecture has enhanced conductivity and connected conductive networks, favoring the storage and transportation of NH4+ or electrons in aqueous electrolytes. As a cathode, the obtained TCNQ-rGO exhibits superior performance for NH4+ batteries with an improved reversible capacity of 92.7 mAh/g at 1 A/g of quadruple capacity boosting to pure TCNQ and stable cycle life (5000 cycles at 10 A/g). The adjustment of the loading ratio of TCNQ and rGO for the cycling performance has been studied in detail. Furthermore, the superior ammonium storage mechanism of the TCNQ-rGO hybrid is thoroughly discussed by in situ Raman or ex situ measurements, which also determine the redox activity center groups of the TCNQ-rGO hybrid. Energy level calculations are conducted to help illustrate its potential as an electrode material. Our work demonstrates that electronic modulation and structural engineering of TCNQ can improve the electrochemical performance of molecular organic compound-based electrodes for aqueous rechargeable batteries in a simple and effective way.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4kerzz发布了新的文献求助10
刚刚
Sydlxy发布了新的文献求助10
刚刚
刚刚
mature0821完成签到,获得积分10
1秒前
1秒前
北执完成签到,获得积分10
2秒前
科目三应助雨醉东风采纳,获得10
3秒前
科研通AI5应助lb采纳,获得50
3秒前
怕孤单的安蕾完成签到,获得积分10
3秒前
lele0566发布了新的文献求助10
3秒前
SJ_Wang完成签到,获得积分10
3秒前
4秒前
土木科研小灵通完成签到 ,获得积分10
4秒前
ertytryt完成签到,获得积分10
4秒前
Qyyy发布了新的文献求助10
4秒前
欣喜代秋发布了新的文献求助10
4秒前
4秒前
5秒前
科研通AI5应助婷婷采纳,获得10
5秒前
月明星稀完成签到 ,获得积分20
6秒前
大方大船完成签到,获得积分10
6秒前
苹果蜗牛发布了新的文献求助10
6秒前
captainx发布了新的文献求助10
6秒前
椰椰柠完成签到,获得积分10
7秒前
0384p发布了新的文献求助10
7秒前
自由宛筠发布了新的文献求助10
7秒前
8秒前
民族药理完成签到,获得积分10
8秒前
鸡蛋灌饼完成签到,获得积分10
9秒前
9秒前
Max发布了新的文献求助10
10秒前
时光友岸完成签到,获得积分10
10秒前
10秒前
高冉完成签到 ,获得积分10
10秒前
悦耳怜南完成签到,获得积分10
11秒前
科研通AI5应助花花采纳,获得10
11秒前
12秒前
12秒前
悦耳的荔枝完成签到,获得积分20
13秒前
风晓博完成签到,获得积分10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
On the identity and nomenclature of a climbing bamboo Melocalamus macclellandii 610
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3556601
求助须知:如何正确求助?哪些是违规求助? 3132165
关于积分的说明 9395129
捐赠科研通 2832233
什么是DOI,文献DOI怎么找? 1556699
邀请新用户注册赠送积分活动 726852
科研通“疑难数据库(出版商)”最低求助积分说明 716107