Deep learning architecture with transformer and semantic field alignment for voxel‐level dose prediction on brain tumors

体素 计算机科学 深度学习 人工智能 人工神经网络 编码器 模式识别(心理学) 核医学 医学 操作系统
作者
Jinna Yang,Yuqian Zhao,Fan Zhang,Miao Liao,Xiaoyu Yang
出处
期刊:Medical Physics [Wiley]
卷期号:50 (2): 1149-1161 被引量:13
标识
DOI:10.1002/mp.16122
摘要

The use of convolution neural networks (CNN) to accurately predict dose distributions can accelerate intensity-modulated radiation therapy (IMRT) planning. The purpose of our study is to develop a novel deep learning architecture for precise voxel-level dose prediction on brain tumors.A dataset of 120 patients with brain tumors is built for the retrospective study. The dose distributions are predicted by a designed end-to-end model called TS-Net, in which the transformer encoder module is utilized to obtain abundant global features by learning long-range correlations of the input sequence. In addition, semantic field alignment (SFA) block is proposed in decoding path to ensure effective propagation of strong semantic information from deep to shallow. Five images from different channels are fed into the architecture, including a computed tomography (CT) image, a planning target volumes (PTV) image, an organs-at-risk (OARs) image, a beam configuration image, and a distance image, and the predicted dose distributions are taken as outputs. We use different evaluation metrics to evaluate the performance of the model and discuss the role of the auxiliary beam configuration information provided by non-modulated dose distributions.The TS-Net prediction accuracies in terms of mean absolute error (MAE) are 2.98% for PTV, 7.19% for brainstem, 1.88% for left len, 2.48% for right len, 9.61% for left optic nerve, 9.10% for right optic nerve, 8.99% for optic chiasma, and 8.28% for pituitary. There is no statistically significant difference between the predicted results and clinical dose distributions for clinical indexes including homogeneity index (HI), D50, and D95 for PTV; V40, mean dose, and max dose for OARs; except for conformation index (CI) and D2 for PTV. The model has dice similarity coefficient (DSC) values of above 0.91 for most isodose volumes, clearly outperforming HD U-Net, and being slightly better than U-Net and DCNN.The proposed TS-Net with beam configuration input can achieve accurate voxel-level dose prediction for brain tumors, and is a usable tool for improving the efficiency and quality of radiotherapy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
独孤九原发布了新的文献求助10
1秒前
5秒前
Vegetable_Dog发布了新的文献求助10
6秒前
7秒前
9秒前
nilu发布了新的文献求助10
9秒前
10秒前
汉堡包应助学渣本渣采纳,获得10
10秒前
wzq完成签到,获得积分10
10秒前
10秒前
10秒前
xkkk完成签到,获得积分10
12秒前
12秒前
12秒前
ZY完成签到,获得积分10
13秒前
13秒前
独孤九原完成签到,获得积分10
14秒前
14秒前
xiaodaiduyan发布了新的文献求助10
14秒前
klll发布了新的文献求助10
14秒前
孤独的狼发布了新的文献求助10
15秒前
zhuzhu007完成签到 ,获得积分10
16秒前
一万光年发布了新的文献求助10
18秒前
19秒前
橙子完成签到,获得积分10
19秒前
nilu完成签到,获得积分10
19秒前
20秒前
无私尔风完成签到,获得积分10
20秒前
gxf发布了新的文献求助10
21秒前
21秒前
Akim应助wty采纳,获得10
21秒前
老实人品牌完成签到,获得积分10
23秒前
23秒前
宋博发布了新的文献求助10
24秒前
脑洞疼应助berg采纳,获得10
24秒前
快乐滑板应助xiaodaiduyan采纳,获得10
24秒前
24秒前
闪闪的YOSH发布了新的文献求助10
25秒前
25秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3145294
求助须知:如何正确求助?哪些是违规求助? 2796749
关于积分的说明 7821013
捐赠科研通 2453006
什么是DOI,文献DOI怎么找? 1305347
科研通“疑难数据库(出版商)”最低求助积分说明 627487
版权声明 601464