Deep learning architecture with transformer and semantic field alignment for voxel‐level dose prediction on brain tumors

体素 计算机科学 深度学习 人工智能 人工神经网络 编码器 模式识别(心理学) 核医学 医学 操作系统
作者
Jinna Yang,Yuqian Zhao,Fan Zhang,Miao Liao,Xiaoyu Yang
出处
期刊:Medical Physics [Wiley]
卷期号:50 (2): 1149-1161 被引量:20
标识
DOI:10.1002/mp.16122
摘要

Abstract Purpose The use of convolution neural networks (CNN) to accurately predict dose distributions can accelerate intensity‐modulated radiation therapy (IMRT) planning. The purpose of our study is to develop a novel deep learning architecture for precise voxel‐level dose prediction on brain tumors. Methods A dataset of 120 patients with brain tumors is built for the retrospective study. The dose distributions are predicted by a designed end‐to‐end model called TS‐Net, in which the transformer encoder module is utilized to obtain abundant global features by learning long‐range correlations of the input sequence. In addition, semantic field alignment (SFA) block is proposed in decoding path to ensure effective propagation of strong semantic information from deep to shallow. Five images from different channels are fed into the architecture, including a computed tomography (CT) image, a planning target volumes (PTV) image, an organs‐at‐risk (OARs) image, a beam configuration image, and a distance image, and the predicted dose distributions are taken as outputs. We use different evaluation metrics to evaluate the performance of the model and discuss the role of the auxiliary beam configuration information provided by non‐modulated dose distributions. Results The TS‐Net prediction accuracies in terms of mean absolute error (MAE) are 2.98% for PTV, 7.19% for brainstem, 1.88% for left len, 2.48% for right len, 9.61% for left optic nerve, 9.10% for right optic nerve, 8.99% for optic chiasma, and 8.28% for pituitary. There is no statistically significant difference between the predicted results and clinical dose distributions for clinical indexes including homogeneity index (HI), D50, and D95 for PTV; V40, mean dose, and max dose for OARs; except for conformation index (CI) and D2 for PTV. The model has dice similarity coefficient (DSC) values of above 0.91 for most isodose volumes, clearly outperforming HD U‐Net, and being slightly better than U‐Net and DCNN. Conclusion The proposed TS‐Net with beam configuration input can achieve accurate voxel‐level dose prediction for brain tumors, and is a usable tool for improving the efficiency and quality of radiotherapy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
搜集达人应助清脆亿先采纳,获得10
刚刚
1秒前
杨阳洋完成签到 ,获得积分10
2秒前
傻傻的磬完成签到 ,获得积分10
4秒前
橘颂完成签到,获得积分10
4秒前
5秒前
务实文涛完成签到,获得积分10
5秒前
打打应助科研通管家采纳,获得10
5秒前
张a应助科研通管家采纳,获得10
5秒前
小蘑菇应助科研通管家采纳,获得10
5秒前
非雨非晴完成签到,获得积分10
5秒前
情怀应助科研通管家采纳,获得10
5秒前
张a应助科研通管家采纳,获得10
6秒前
monly应助科研通管家采纳,获得10
6秒前
6秒前
张a应助科研通管家采纳,获得10
6秒前
Polling完成签到,获得积分10
6秒前
6秒前
6秒前
小蘑菇应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
6秒前
Jasper应助科研通管家采纳,获得10
6秒前
6秒前
情怀应助科研通管家采纳,获得10
6秒前
赘婿应助科研通管家采纳,获得10
6秒前
张a应助科研通管家采纳,获得10
6秒前
monly应助科研通管家采纳,获得10
6秒前
Jasper应助科研通管家采纳,获得10
6秒前
赘婿应助科研通管家采纳,获得10
6秒前
BowieHuang应助科研通管家采纳,获得10
6秒前
充电宝应助科研通管家采纳,获得10
6秒前
科目三应助科研通管家采纳,获得10
6秒前
脑洞疼应助科研通管家采纳,获得10
6秒前
张a应助科研通管家采纳,获得10
7秒前
隐形曼青应助科研通管家采纳,获得10
7秒前
monly应助科研通管家采纳,获得10
7秒前
7秒前
田様应助科研通管家采纳,获得10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5728665
求助须知:如何正确求助?哪些是违规求助? 5314143
关于积分的说明 15314925
捐赠科研通 4875842
什么是DOI,文献DOI怎么找? 2618989
邀请新用户注册赠送积分活动 1568649
关于科研通互助平台的介绍 1525191