Deep learning architecture with transformer and semantic field alignment for voxel‐level dose prediction on brain tumors

体素 计算机科学 深度学习 人工智能 人工神经网络 编码器 模式识别(心理学) 核医学 医学 操作系统
作者
Jinna Yang,Yuqian Zhao,Fan Zhang,Miao Liao,Xiaoyu Yang
出处
期刊:Medical Physics [Wiley]
卷期号:50 (2): 1149-1161 被引量:14
标识
DOI:10.1002/mp.16122
摘要

The use of convolution neural networks (CNN) to accurately predict dose distributions can accelerate intensity-modulated radiation therapy (IMRT) planning. The purpose of our study is to develop a novel deep learning architecture for precise voxel-level dose prediction on brain tumors.A dataset of 120 patients with brain tumors is built for the retrospective study. The dose distributions are predicted by a designed end-to-end model called TS-Net, in which the transformer encoder module is utilized to obtain abundant global features by learning long-range correlations of the input sequence. In addition, semantic field alignment (SFA) block is proposed in decoding path to ensure effective propagation of strong semantic information from deep to shallow. Five images from different channels are fed into the architecture, including a computed tomography (CT) image, a planning target volumes (PTV) image, an organs-at-risk (OARs) image, a beam configuration image, and a distance image, and the predicted dose distributions are taken as outputs. We use different evaluation metrics to evaluate the performance of the model and discuss the role of the auxiliary beam configuration information provided by non-modulated dose distributions.The TS-Net prediction accuracies in terms of mean absolute error (MAE) are 2.98% for PTV, 7.19% for brainstem, 1.88% for left len, 2.48% for right len, 9.61% for left optic nerve, 9.10% for right optic nerve, 8.99% for optic chiasma, and 8.28% for pituitary. There is no statistically significant difference between the predicted results and clinical dose distributions for clinical indexes including homogeneity index (HI), D50, and D95 for PTV; V40, mean dose, and max dose for OARs; except for conformation index (CI) and D2 for PTV. The model has dice similarity coefficient (DSC) values of above 0.91 for most isodose volumes, clearly outperforming HD U-Net, and being slightly better than U-Net and DCNN.The proposed TS-Net with beam configuration input can achieve accurate voxel-level dose prediction for brain tumors, and is a usable tool for improving the efficiency and quality of radiotherapy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ll发布了新的文献求助10
刚刚
1秒前
cc完成签到,获得积分10
1秒前
lu完成签到,获得积分10
1秒前
伍锦华发布了新的文献求助10
1秒前
1秒前
hmh完成签到,获得积分10
1秒前
1233330完成签到,获得积分10
2秒前
yan完成签到,获得积分10
2秒前
dra9on发布了新的文献求助10
2秒前
邓佳鑫Alan应助zfy采纳,获得10
3秒前
科研通AI2S应助zfy采纳,获得10
3秒前
怕黑的灵萱完成签到 ,获得积分10
3秒前
hh发布了新的文献求助10
3秒前
3秒前
www完成签到,获得积分10
3秒前
3秒前
Xx完成签到,获得积分10
4秒前
只因完成签到,获得积分10
4秒前
4秒前
深情笑南完成签到,获得积分20
4秒前
asdfghj发布了新的文献求助10
5秒前
zz应助Shirley采纳,获得30
5秒前
开朗发夹完成签到,获得积分10
6秒前
同學你該吃藥了完成签到 ,获得积分10
6秒前
6秒前
7秒前
酷波er应助fisher采纳,获得40
7秒前
九命猫完成签到 ,获得积分10
7秒前
topsun发布了新的文献求助10
8秒前
皮三问完成签到,获得积分10
8秒前
烟花应助紫愿采纳,获得10
8秒前
Yyy完成签到,获得积分10
8秒前
cowboy123完成签到,获得积分10
8秒前
8秒前
景代丝发布了新的文献求助10
8秒前
yiyiyiyiyi//完成签到,获得积分10
8秒前
Qi完成签到 ,获得积分10
9秒前
俊秀的安阳完成签到,获得积分10
9秒前
郁金香完成签到,获得积分10
9秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
徐淮辽南地区新元古代叠层石及生物地层 500
Coking simulation aids on-stream time 450
康复物理因子治疗 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4016344
求助须知:如何正确求助?哪些是违规求助? 3556478
关于积分的说明 11321199
捐赠科研通 3289279
什么是DOI,文献DOI怎么找? 1812421
邀请新用户注册赠送积分活动 887952
科研通“疑难数据库(出版商)”最低求助积分说明 812060