Self-attention presents low-dimensional knowledge graph embeddings for link prediction

计算机科学 可扩展性 嵌入 降维 知识图 图形 维数之咒 变压器 编码器 人工智能 数据挖掘 理论计算机科学 机器学习 数据库 操作系统 物理 电压 量子力学
作者
Peyman Baghershahi,Reshad Hosseini,Hadi Moradi
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:260: 110124-110124 被引量:28
标识
DOI:10.1016/j.knosys.2022.110124
摘要

A few models have tried to tackle the link prediction problem, also known as knowledge graph completion, by embedding knowledge graphs in comparably lower dimensions. However, the state-of-the-art results are attained at the cost of considerably increasing the dimensionality of embeddings which causes scalability issues in the case of huge knowledge bases. Transformers have been successfully used recently as powerful encoders for knowledge graphs, but available models still have scalability issues. To address this limitation, we introduce a Transformer-based model to gain expressive low-dimensional embeddings. We utilize a large number of self-attention heads as the key to applying query-dependent projections to capture mutual information between entities and relations. Empirical results on WN18RR and FB15k-237 as standard link prediction benchmarks demonstrate that our model has favorably comparable performance with the current state-of-the-art models. Notably, we yield our promising results with a significant reduction of 66.9% in the dimensionality of embeddings compared to the five best recent state-of-the-art competitors on average.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Active发布了新的文献求助10
1秒前
1秒前
852应助小张采纳,获得10
1秒前
4秒前
Linux2000Pro完成签到,获得积分10
4秒前
沃研发布了新的文献求助10
4秒前
小二郎应助Shennnn采纳,获得10
5秒前
安详靖柏完成签到 ,获得积分10
5秒前
6秒前
6秒前
WIsh完成签到 ,获得积分10
7秒前
10秒前
Rollei发布了新的文献求助10
10秒前
甜美冰旋发布了新的文献求助10
10秒前
文献高手完成签到 ,获得积分10
11秒前
红烧板蓝根完成签到,获得积分10
12秒前
14秒前
15秒前
Yimi发布了新的文献求助10
15秒前
15秒前
沃研完成签到 ,获得积分10
16秒前
Rollei完成签到,获得积分10
17秒前
18秒前
情怀应助ts采纳,获得10
19秒前
19秒前
上官若男应助坚强的赛凤采纳,获得10
19秒前
19秒前
蛋筒完成签到,获得积分10
20秒前
田様应助那一片海采纳,获得10
21秒前
iNk应助Yimi采纳,获得10
23秒前
23秒前
刻苦的宛白应助宋晴也采纳,获得10
24秒前
思源应助甜美冰旋采纳,获得10
24秒前
24秒前
Joyce发布了新的文献求助10
24秒前
聪明藏今完成签到,获得积分10
25秒前
共享精神应助Iris采纳,获得30
25秒前
26秒前
27秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967152
求助须知:如何正确求助?哪些是违规求助? 3512481
关于积分的说明 11163524
捐赠科研通 3247421
什么是DOI,文献DOI怎么找? 1793805
邀请新用户注册赠送积分活动 874615
科研通“疑难数据库(出版商)”最低求助积分说明 804450