Fast detection method for prostate cancer cells based on an integrated ResNet50 and YoloV5 framework

计算机科学 前列腺癌 人工智能 深度学习 前列腺 癌症检测 模式识别(心理学) 阶段(地层学) 癌症 计算机视觉 医学 生物 古生物学 内科学
作者
Hongyuan Huang,Zhijiao You,Huayu Cai,Jianfeng Xu,Dongxu Lin
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:226: 107184-107184 被引量:20
标识
DOI:10.1016/j.cmpb.2022.107184
摘要

To propose a fast detection method for prostate cancer abnormal cells based on deep learning. The purpose of this method is to quickly and accurately locate and identify abnormal cells, so as to improve the efficiency of prostate precancerous screening and promote the application and popularization of prostate cancer cell assisted screening technology.The method includes two stages: preliminary screening of abnormal cell images and accurate identification of abnormal cells. In the preliminary screening stage of abnormal cell images, ResNet50 model is used as the image classification network to judge whether the local area contains cell clusters. In the another stage, YoloV5 model is used as the target detection network to locate and recognize abnormal cells in the image containing cell clusters.This detection method aims at the pathological cell images obtained by the membrane method. And the double stage models proposed in this paper are compared with the single stage model method using only the target detection model. The results show that through the image classification network based on deep learning, we can first judge whether there are abnormal cells in the local area. If there are abnormal cells, we can further use the target detection method based on candidate box for analysis, which can reduce the reasoning time by 50% and improve the efficiency of abnormal cell detection under the condition of losing a small amount of accuracy and slightly increasing the complexity of the model.This study proposes a fast detection method for prostate cancer abnormal cells based on deep learning, which can greatly shorten the reasoning time and improve the detection speed. It is able to improve the efficiency of prostate precancerous screening.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
Phoenix ZHANG完成签到,获得积分10
2秒前
潘岩发布了新的文献求助10
3秒前
5秒前
小蘑菇应助duoduo采纳,获得10
5秒前
大个应助PJY采纳,获得10
6秒前
666yj完成签到 ,获得积分10
7秒前
10秒前
程艳完成签到 ,获得积分10
10秒前
辰辰完成签到 ,获得积分10
11秒前
传奇3应助威武晓啸采纳,获得10
12秒前
12秒前
14秒前
14秒前
15秒前
发paper发布了新的文献求助10
15秒前
werm完成签到 ,获得积分10
17秒前
金开完成签到,获得积分10
19秒前
zhuangbaobao完成签到,获得积分10
20秒前
21秒前
MM发布了新的文献求助10
23秒前
23秒前
MM完成签到,获得积分10
34秒前
34秒前
37秒前
37秒前
FortuneCutie完成签到,获得积分10
39秒前
40秒前
Andy_Zhou_01应助迷路的秋灵采纳,获得10
41秒前
稳重的蛟凤应助青尘如墨采纳,获得10
42秒前
佳佳佳发布了新的文献求助10
42秒前
猛犸象冲冲冲完成签到,获得积分10
46秒前
离个大谱发布了新的文献求助10
47秒前
清脆的白凡完成签到,获得积分10
48秒前
48秒前
坚强的翠霜完成签到 ,获得积分10
50秒前
烂漫笑晴完成签到 ,获得积分10
51秒前
离个大谱完成签到,获得积分10
51秒前
猴儿发布了新的文献求助10
53秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Yangtze Reminiscences. Some Notes And Recollections Of Service With The China Navigation Company Ltd., 1925-1939 800
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Psychological Well-being The Complexities of Mental and Emotional Health 500
T/SNFSOC 0002—2025 独居石精矿碱法冶炼工艺技术标准 300
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5856771
求助须知:如何正确求助?哪些是违规求助? 6324270
关于积分的说明 15635227
捐赠科研通 4971235
什么是DOI,文献DOI怎么找? 2681250
邀请新用户注册赠送积分活动 1625184
关于科研通互助平台的介绍 1582223