OpenFold: Retraining AlphaFold2 yields new insights into its learning mechanisms and capacity for generalization

再培训 计算机科学 一般化 人工智能 机器学习 集合(抽象数据类型) 匹配(统计) 过程(计算) 空格(标点符号) 编码(集合论) 数学 统计 操作系统 数学分析 业务 国际贸易 程序设计语言
作者
Gustaf Ahdritz,Nazim Bouatta,Christina Floristean,Sachin Kadyan,Qinghui Xia,William Gerecke,Timothy O’Donnell,Daniel Berenberg,I. Fisk,Niccolò Zanichelli,Bo Zhang,Arkadiusz Nowaczynski,Bei Wang,Marta M. Stepniewska-Dziubinska,Shang Zhang,Adegoke A. Ojewole,Murat Efe Guney,Stella Biderman,Andrew M. Watkins,Stephen Ra
标识
DOI:10.1101/2022.11.20.517210
摘要

Abstract AlphaFold2 revolutionized structural biology with the ability to predict protein structures with exceptionally high accuracy. Its implementation, however, lacks the code and data required to train new models. These are necessary to (i) tackle new tasks, like protein-ligand complex structure prediction, (ii) investigate the process by which the model learns, which remains poorly understood, and (iii) assess the model’s generalization capacity to unseen regions of fold space. Here we report OpenFold, a fast, memory-efficient, and trainable implementation of AlphaFold2. We train OpenFold from scratch, fully matching the accuracy of AlphaFold2. Having established parity, we assess OpenFold’s capacity to generalize across fold space by retraining it using carefully designed datasets. We find that OpenFold is remarkably robust at generalizing despite extreme reductions in training set size and diversity, including near-complete elisions of classes of secondary structure elements. By analyzing intermediate structures produced by OpenFold during training, we also gain surprising insights into the manner in which the model learns to fold proteins, discovering that spatial dimensions are learned sequentially. Taken together, our studies demonstrate the power and utility of OpenFold, which we believe will prove to be a crucial new resource for the protein modeling community.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
酷波er应助NEMO采纳,获得10
2秒前
2秒前
2秒前
2秒前
情怀应助shirleeyeahe采纳,获得10
2秒前
3秒前
元元应助xzy采纳,获得20
3秒前
泥花完成签到,获得积分10
3秒前
247793325完成签到,获得积分20
3秒前
眼睛大的冰岚完成签到,获得积分10
3秒前
YY完成签到 ,获得积分10
3秒前
4秒前
雨天慢行完成签到,获得积分10
4秒前
韦威风发布了新的文献求助10
4秒前
科目三应助深情的不评采纳,获得10
4秒前
飞快的梦易完成签到,获得积分10
5秒前
Akim应助1b采纳,获得10
5秒前
末岛完成签到,获得积分10
5秒前
sweetbearm应助benben采纳,获得10
5秒前
5秒前
6秒前
科研通AI5应助今今采纳,获得10
6秒前
通~发布了新的文献求助10
6秒前
YY完成签到,获得积分10
6秒前
首席医官完成签到,获得积分10
7秒前
坚定迎天完成签到,获得积分10
7秒前
Zzzoey发布了新的文献求助10
8秒前
搜集达人应助小罗飞飞飞采纳,获得10
8秒前
詹卫卫完成签到 ,获得积分10
8秒前
8秒前
宇_发布了新的文献求助20
8秒前
9秒前
esdeath发布了新的文献求助10
9秒前
云轩完成签到,获得积分10
9秒前
9秒前
9秒前
自然乐松发布了新的文献求助10
9秒前
yesir完成签到,获得积分10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794