OpenFold: Retraining AlphaFold2 yields new insights into its learning mechanisms and capacity for generalization

再培训 计算机科学 一般化 人工智能 机器学习 集合(抽象数据类型) 匹配(统计) 过程(计算) 编码(集合论) 数学 数学分析 统计 国际贸易 业务 程序设计语言 操作系统
作者
Gustaf Ahdritz,Nazim Bouatta,Christina Floristean,Sachin Kadyan,Qinghui Xia,William Gerecke,Timothy J. O’Donnell,Daniel Berenberg,I. Fisk,Niccolò Zanichelli,Bo Zhang,Arkadiusz Nowaczynski,Bei Wang,Marta M. Stepniewska-Dziubinska,Shang Zhang,Adegoke A. Ojewole,Murat Efe Guney,Stella Biderman,Andrew M. Watkins,Stephen Ra
标识
DOI:10.1101/2022.11.20.517210
摘要

Abstract AlphaFold2 revolutionized structural biology with the ability to predict protein structures with exceptionally high accuracy. Its implementation, however, lacks the code and data required to train new models. These are necessary to (i) tackle new tasks, like protein-ligand complex structure prediction, (ii) investigate the process by which the model learns, which remains poorly understood, and (iii) assess the model’s generalization capacity to unseen regions of fold space. Here we report OpenFold, a fast, memory-efficient, and trainable implementation of AlphaFold2. We train OpenFold from scratch, fully matching the accuracy of AlphaFold2. Having established parity, we assess OpenFold’s capacity to generalize across fold space by retraining it using carefully designed datasets. We find that OpenFold is remarkably robust at generalizing despite extreme reductions in training set size and diversity, including near-complete elisions of classes of secondary structure elements. By analyzing intermediate structures produced by OpenFold during training, we also gain surprising insights into the manner in which the model learns to fold proteins, discovering that spatial dimensions are learned sequentially. Taken together, our studies demonstrate the power and utility of OpenFold, which we believe will prove to be a crucial new resource for the protein modeling community.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
MM关闭了MM文献求助
1秒前
古德方发布了新的文献求助10
1秒前
1秒前
失眠台灯完成签到,获得积分20
1秒前
shengshiyu完成签到,获得积分10
1秒前
彭于晏应助自由的白开水采纳,获得10
3秒前
dzl发布了新的文献求助10
4秒前
小马完成签到,获得积分20
4秒前
NATURECATCHER发布了新的文献求助10
4秒前
陈科研完成签到,获得积分10
4秒前
Ava应助糟糕的铁锤采纳,获得10
5秒前
Zyl完成签到 ,获得积分10
5秒前
6秒前
852应助杨迪楠采纳,获得10
6秒前
6秒前
6秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
8秒前
Akim应助念安采纳,获得10
8秒前
9秒前
youda完成签到 ,获得积分10
9秒前
乐乐应助满意小丸子采纳,获得10
9秒前
9秒前
10秒前
10秒前
yang发布了新的文献求助10
10秒前
大模型应助Herry-Jeremy采纳,获得10
10秒前
斯文败类应助牧瞻采纳,获得10
11秒前
KaleighCarlos发布了新的文献求助10
11秒前
xxx发布了新的文献求助10
11秒前
香蕉从寒完成签到,获得积分10
12秒前
12秒前
123完成签到 ,获得积分10
12秒前
wkkky发布了新的文献求助10
12秒前
量子星尘发布了新的文献求助10
12秒前
青椒超人完成签到,获得积分20
12秒前
sssss发布了新的文献求助10
13秒前
CodeCraft应助Aurora采纳,获得10
13秒前
852应助4born采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5784462
求助须知:如何正确求助?哪些是违规求助? 5682526
关于积分的说明 15464250
捐赠科研通 4913580
什么是DOI,文献DOI怎么找? 2644772
邀请新用户注册赠送积分活动 1592662
关于科研通互助平台的介绍 1547148