OpenFold: Retraining AlphaFold2 yields new insights into its learning mechanisms and capacity for generalization

再培训 计算机科学 一般化 人工智能 机器学习 集合(抽象数据类型) 匹配(统计) 过程(计算) 编码(集合论) 数学 统计 操作系统 数学分析 业务 国际贸易 程序设计语言
作者
Gustaf Ahdritz,Nazim Bouatta,Christina Floristean,Sachin Kadyan,Qinghui Xia,William Gerecke,Timothy J. O’Donnell,Daniel Berenberg,I. Fisk,Niccolò Zanichelli,Bo Zhang,Arkadiusz Nowaczynski,Bei Wang,Marta M. Stepniewska-Dziubinska,Shang Zhang,Adegoke A. Ojewole,Murat Efe Guney,Stella Biderman,Andrew Watkins,Stephen Ra
标识
DOI:10.1101/2022.11.20.517210
摘要

Abstract AlphaFold2 revolutionized structural biology with the ability to predict protein structures with exceptionally high accuracy. Its implementation, however, lacks the code and data required to train new models. These are necessary to (i) tackle new tasks, like protein-ligand complex structure prediction, (ii) investigate the process by which the model learns, which remains poorly understood, and (iii) assess the model’s generalization capacity to unseen regions of fold space. Here we report OpenFold, a fast, memory-efficient, and trainable implementation of AlphaFold2. We train OpenFold from scratch, fully matching the accuracy of AlphaFold2. Having established parity, we assess OpenFold’s capacity to generalize across fold space by retraining it using carefully designed datasets. We find that OpenFold is remarkably robust at generalizing despite extreme reductions in training set size and diversity, including near-complete elisions of classes of secondary structure elements. By analyzing intermediate structures produced by OpenFold during training, we also gain surprising insights into the manner in which the model learns to fold proteins, discovering that spatial dimensions are learned sequentially. Taken together, our studies demonstrate the power and utility of OpenFold, which we believe will prove to be a crucial new resource for the protein modeling community.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
orixero应助mmmq采纳,获得10
刚刚
1秒前
我心向明月完成签到,获得积分10
1秒前
蜘蛛道理发布了新的文献求助10
1秒前
lz发布了新的文献求助10
1秒前
领导范儿应助悠悠采纳,获得10
1秒前
2秒前
2秒前
William_l_c完成签到,获得积分10
3秒前
3秒前
Jjjj应助怂怂君采纳,获得10
3秒前
wenjiejiang完成签到,获得积分10
4秒前
4秒前
董小李完成签到,获得积分10
4秒前
5秒前
华仔应助mkb采纳,获得30
7秒前
学子发布了新的文献求助10
7秒前
7秒前
哈哈哈完成签到 ,获得积分10
8秒前
Airy完成签到,获得积分10
8秒前
8秒前
XLX发布了新的文献求助10
8秒前
无花果应助WTTTTTFFFFFF采纳,获得10
8秒前
8秒前
周子发布了新的文献求助20
8秒前
9秒前
9秒前
zhao发布了新的文献求助10
10秒前
10秒前
10秒前
科研通AI6应助dmyy313235采纳,获得10
11秒前
11秒前
11秒前
Hello应助谨慎的雨梅采纳,获得10
11秒前
cfy完成签到,获得积分10
11秒前
XJY完成签到,获得积分10
12秒前
12秒前
琳琅满目发布了新的文献求助10
12秒前
13秒前
忧伤的鲜花完成签到,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Feigin and Cherry's Textbook of Pediatric Infectious Diseases Ninth Edition 2024 4000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
Socialization In The Context Of The Family: Parent-Child Interaction 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5001060
求助须知:如何正确求助?哪些是违规求助? 4246201
关于积分的说明 13228838
捐赠科研通 4044813
什么是DOI,文献DOI怎么找? 2212873
邀请新用户注册赠送积分活动 1223033
关于科研通互助平台的介绍 1143352