OpenFold: Retraining AlphaFold2 yields new insights into its learning mechanisms and capacity for generalization

再培训 计算机科学 一般化 人工智能 机器学习 集合(抽象数据类型) 匹配(统计) 过程(计算) 编码(集合论) 数学 数学分析 统计 国际贸易 业务 程序设计语言 操作系统
作者
Gustaf Ahdritz,Nazim Bouatta,Christina Floristean,Sachin Kadyan,Qinghui Xia,William Gerecke,Timothy J. O’Donnell,Daniel Berenberg,I. Fisk,Niccolò Zanichelli,Bo Zhang,Arkadiusz Nowaczynski,Bei Wang,Marta M. Stepniewska-Dziubinska,Shang Zhang,Adegoke A. Ojewole,Murat Efe Guney,Stella Biderman,Andrew M. Watkins,Stephen Ra
标识
DOI:10.1101/2022.11.20.517210
摘要

Abstract AlphaFold2 revolutionized structural biology with the ability to predict protein structures with exceptionally high accuracy. Its implementation, however, lacks the code and data required to train new models. These are necessary to (i) tackle new tasks, like protein-ligand complex structure prediction, (ii) investigate the process by which the model learns, which remains poorly understood, and (iii) assess the model’s generalization capacity to unseen regions of fold space. Here we report OpenFold, a fast, memory-efficient, and trainable implementation of AlphaFold2. We train OpenFold from scratch, fully matching the accuracy of AlphaFold2. Having established parity, we assess OpenFold’s capacity to generalize across fold space by retraining it using carefully designed datasets. We find that OpenFold is remarkably robust at generalizing despite extreme reductions in training set size and diversity, including near-complete elisions of classes of secondary structure elements. By analyzing intermediate structures produced by OpenFold during training, we also gain surprising insights into the manner in which the model learns to fold proteins, discovering that spatial dimensions are learned sequentially. Taken together, our studies demonstrate the power and utility of OpenFold, which we believe will prove to be a crucial new resource for the protein modeling community.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
义气若菱发布了新的文献求助10
刚刚
An完成签到,获得积分10
刚刚
lumin完成签到,获得积分10
刚刚
刚刚
有使不完牛劲的正主完成签到,获得积分10
1秒前
1秒前
1秒前
量子星尘发布了新的文献求助10
2秒前
ln发布了新的文献求助10
2秒前
3秒前
学习使我快乐完成签到,获得积分10
4秒前
4秒前
5秒前
5秒前
5秒前
很美味完成签到,获得积分20
6秒前
libe应助周宋采纳,获得100
6秒前
墨夕完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
6秒前
7秒前
7秒前
孙七喜完成签到,获得积分10
8秒前
kingmantj发布了新的文献求助10
8秒前
8秒前
8秒前
拉拉发布了新的文献求助10
8秒前
9秒前
9秒前
务实冷风发布了新的文献求助10
10秒前
赘婿应助xyu采纳,获得10
10秒前
李LLL完成签到,获得积分10
10秒前
10秒前
上官若男应助粉色棉毛裤采纳,获得10
11秒前
小李完成签到,获得积分10
11秒前
11秒前
11秒前
12秒前
隐形曼青应助又是许想想采纳,获得10
12秒前
12秒前
冷傲迎梦发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5709779
求助须知:如何正确求助?哪些是违规求助? 5196481
关于积分的说明 15258245
捐赠科研通 4862424
什么是DOI,文献DOI怎么找? 2610141
邀请新用户注册赠送积分活动 1560472
关于科研通互助平台的介绍 1518157