OpenFold: Retraining AlphaFold2 yields new insights into its learning mechanisms and capacity for generalization

再培训 计算机科学 一般化 人工智能 机器学习 集合(抽象数据类型) 匹配(统计) 过程(计算) 编码(集合论) 数学 统计 操作系统 数学分析 业务 国际贸易 程序设计语言
作者
Gustaf Ahdritz,Nazim Bouatta,Christina Floristean,Sachin Kadyan,Qinghui Xia,William Gerecke,Timothy O’Donnell,Daniel Berenberg,I. Fisk,Niccolò Zanichelli,Bo Zhang,Arkadiusz Nowaczynski,Bei Wang,Marta M. Stepniewska-Dziubinska,Shang Zhang,Adegoke A. Ojewole,Murat Efe Guney,Stella Biderman,Andrew M. Watkins,Stephen Ra
标识
DOI:10.1101/2022.11.20.517210
摘要

Abstract AlphaFold2 revolutionized structural biology with the ability to predict protein structures with exceptionally high accuracy. Its implementation, however, lacks the code and data required to train new models. These are necessary to (i) tackle new tasks, like protein-ligand complex structure prediction, (ii) investigate the process by which the model learns, which remains poorly understood, and (iii) assess the model’s generalization capacity to unseen regions of fold space. Here we report OpenFold, a fast, memory-efficient, and trainable implementation of AlphaFold2. We train OpenFold from scratch, fully matching the accuracy of AlphaFold2. Having established parity, we assess OpenFold’s capacity to generalize across fold space by retraining it using carefully designed datasets. We find that OpenFold is remarkably robust at generalizing despite extreme reductions in training set size and diversity, including near-complete elisions of classes of secondary structure elements. By analyzing intermediate structures produced by OpenFold during training, we also gain surprising insights into the manner in which the model learns to fold proteins, discovering that spatial dimensions are learned sequentially. Taken together, our studies demonstrate the power and utility of OpenFold, which we believe will prove to be a crucial new resource for the protein modeling community.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Min发布了新的文献求助30
1秒前
1秒前
funnyelephant完成签到 ,获得积分10
1秒前
3秒前
搜集达人应助单薄月饼采纳,获得10
3秒前
4秒前
4秒前
huangwenyu完成签到,获得积分10
5秒前
星辰大海应助Star-XYX采纳,获得10
5秒前
动听听安完成签到,获得积分20
6秒前
elastin完成签到,获得积分10
7秒前
chcmuer发布了新的文献求助10
7秒前
阅知发布了新的文献求助10
7秒前
YUNJIE发布了新的文献求助10
7秒前
sanwan完成签到,获得积分10
8秒前
柯一一应助weiwei采纳,获得10
8秒前
9秒前
可爱的小桃完成签到,获得积分10
10秒前
10秒前
Min完成签到,获得积分10
10秒前
guagua发布了新的文献求助10
10秒前
zhihan完成签到,获得积分10
11秒前
11秒前
nbing完成签到,获得积分10
12秒前
王小聪明发布了新的文献求助10
12秒前
jhw发布了新的文献求助10
13秒前
在水一方应助keyanqianjin采纳,获得10
14秒前
充电宝应助Marshzz采纳,获得10
14秒前
15秒前
牛0254发布了新的文献求助10
15秒前
张菁完成签到,获得积分10
16秒前
pluto应助义气猫咪采纳,获得10
17秒前
18秒前
guagua完成签到,获得积分10
18秒前
动听听安关注了科研通微信公众号
19秒前
19秒前
Ava应助黎明采纳,获得10
20秒前
biubiu完成签到,获得积分10
21秒前
ding应助猪猪hero采纳,获得10
21秒前
21秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954299
求助须知:如何正确求助?哪些是违规求助? 3500338
关于积分的说明 11099026
捐赠科研通 3230828
什么是DOI,文献DOI怎么找? 1786171
邀请新用户注册赠送积分活动 869840
科研通“疑难数据库(出版商)”最低求助积分说明 801651