光催化
异质结
降级(电信)
兴奋剂
材料科学
盐酸四环素
催化作用
光化学
核化学
化学工程
化学
四环素
光电子学
有机化学
计算机科学
生物化学
电信
工程类
抗生素
作者
Xudong Yin,Xiaojie Sun,Dehao Li,Wenyu Xie,Yufeng Mao,Zhenghui Liu,Zhisen Liu
标识
DOI:10.3390/ijerph192214935
摘要
Bi2WO6-based heterojunction photocatalyst for antibiotic degradation has been a research hotspot, but its photocatalytic performance needs to be further improved. Therefore, 2D/2D P-doped g-C3N4/Bi2WO6 direct Z-scheme heterojunction photocatalysts with different composition ratios were prepared through three strategies of phosphorus (P) element doping, morphology regulation, and heterojunction, and the efficiency of its degradation of tetracycline hydrochloride (TC-HCl) under visible light was studied. Their structural, optical, and electronic properties were evaluated, and their photocatalytic efficiency for TC-HCl degradation was explored with a detailed assessment of the active species, degradation pathways, and effects of humic acid, different anions and cations, and water sources. The 30% P-doped g-C3N4/Bi2WO6 had the best photocatalytic performance for TC-HCl degradation. Its photocatalytic rate was 4.5-, 2.2-, and 1.9-times greater than that of g-C3N4, P-doped g-C3N4, and Bi2WO6, respectively. The improved photocatalytic efficiency was attributed to the synergistic effect of P doping and 2D/2D direct Z-scheme heterojunction construction. The stability and reusability of the 30% P-doped C3N4/Bi2WO6 were confirmed by cyclic degradation experiments. Radical scavenging experiments and electron spin resonance spectroscopy showed that the main active species were •O2- and h+. This work provides a new strategy for the preparation of direct Z-scheme heterojunction catalysts with high catalytic performance.
科研通智能强力驱动
Strongly Powered by AbleSci AI