Dual IKZF2 and CK1α Degrader Targets Acute Myeloid Leukemia Cells

生物 髓样 髓系白血病 干细胞 癌症研究 白血病 细胞培养 免疫学 细胞生物学 遗传学
作者
Sun Mi Park,David K. Miyamoto,Grace Han,Mandy Chan,Nicole Curnutt,Nathan Tran,Anthony Velleca,Jun‐Hyun Kim,Alexandra Schurer,Kathryn Chang,Christina M. Woo,Michael G. Kharas
出处
期刊:Blood [American Society of Hematology]
卷期号:140 (Supplement 1): 675-676
标识
DOI:10.1182/blood-2022-167678
摘要

Acute myeloid leukemia (AML) is an aggressive hematologic disease for which several epigenetic regulators have been identified as therapeutic targets. We previously found that a transcription factor and Ikaros family member, IKZF2 (HELIOS) is required for myeloid leukemic stem cell activity (Park et al. Cell Stem Cell 2019). Additionally, IKZF2 enhances self-renewal by increasing HOXA9 gene expression and in parallel blocks myeloid differentiation by reducing C/EBP expression. Thus, our studies suggested that targeting IKZF2 could be a new therapeutic strategy in AML. Immunomodulatory drugs (IMiDs; lenalidomide and others) have been used clinically to specifically target and degrade other Ikaros family members. However, these have been unable to target IKZF2. Utilizing a structure-guided approach, we developed a small molecule with low nanomolar degrader activity against IKZF2 (DEG-35). DEG-35 treatment in different AML cell lines induce apoptosis and differentiation with IC50 values of 5 ±0.4 nM in MOLM-13 cells to 27± 2.5 uM in NB4 cells. To understand if DEG35 has activity against other substrates, we performed global quantitative proteomics and found casein kinase 1 alpha (CK1α), a serine/threonine kinase previously identified to be critical for myeloid leukemogenesis and a known IMiD substrate, to be the most depleted protein (Jaras et al. JEM). Also, we performed a PRISM (Profiling Relative Inhibition Simultaneously in Mixtures) screen assay which utilizes 770 barcoded cell lines from 20 lineages and identified multiple correlations with the p53 pathway. Previous studies found that CK1α suppresses the activity of p53 phosphorylation or binding MDM proteins. To further probe the mechanism behind DEG35 activity, we performed RNA sequencing at 24hrs in MOLM-13 cells. Gene set enrichment analysis (GSEA) using the rank list of differentially expressed genes from the MOLM-13 cells treated with DMSO and DEG-35 revealed enrichment for genes upregulated in CK1α KO keratinocytes and p53 targets. Additionally, we found enrichment for the MLL-AF9 IKZF2 KO LSC gene sets, myeloid differentiation, loss of MEIS1-HOXA9 and MYC targets. Immunoblotting validated the reduction of MYC and HOXA9 protein in DEG-35 treated MOLM-13 cells. To determine the contribution of CK1α and IKZF2 to the cellular phenotypes in MOLM13 cells, we developed CK1α and IKZF2 nondegradable mutants. CK1α, G40N was able to significantly reduce the cell killing activity of DEG-35 by 94% compared to vector cells (**p<0.01). Moreover, p53 deletion was also able to block DEG-35 induced apoptosis by 98% and differentiation by 88% compared to control. Additionally, expression of IKZF2 H141Q rescued DEG-35 mediated differentiation by 55% (***p<0.001), but not apoptosis. Thus, we demonstrate that the degradation of IKZF2 and CK1α by DEG-35 blocks cell growth and induces myeloid differentiation in human AML cell lines through CK1α-p53- and IKZF2-dependent pathways. To further probe the efficacy and therapeutic index of targeting both IKZF2 and CK1α. We found that AML cells were more sensitive to DEG-35 compared to normal bone marrow cells (murine MLL-AF9 Crbn I1391V cells has 10 fold and AML PDX cells have 2-5 fold higher sensitivity to normal mouse or human bone marrow cells).Treatment of DEG-35 at 50 mg/kg in AML PDX-transplanted mice led to significant prolonged survival compared to vehicle treated mice (median survival of DMSO mice: 45 days vs DEG-35 mice: 61 days; ***p< 0.001) and reduced disease burden. To improve pharmacological properties, we developed analog DEG-77, which has 10-fold increased solubility than DEG-35 in DMSO. DEG77 exhibited better in vivo efficacy in the MLL-AF9 Crbn I1391V model (Increase in median survival by DEG-35: 2 days *p<0.05 vs DEG-77: 31 days ****p<0.0001). Importantly, the increase of median survival of 30 days (****p<0.0001) was also observed in the secondarily transplanted DEG-77 mice compared to DMSO mice, suggesting that DEG-35 can reduce LSC activity. In summary, we report the development of nanomolar monofunctional cereblon-dependent degraders of IKZF2 and casein kinase 1 alpha (CK1α). DEG-35 or the analog DEG-77 delays leukemia progression in murine and human AML mice models. Thus, we provide a novel strategy for multi-targeted degradation of IKZF2/CK1α to enhance efficacy against AML that may be expanded to additional targets and indications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
momo发布了新的文献求助10
刚刚
2秒前
4秒前
Pattis完成签到 ,获得积分10
5秒前
红红发布了新的文献求助10
5秒前
Solkatt发布了新的文献求助10
7秒前
gavin完成签到 ,获得积分10
7秒前
小马甲应助tracy采纳,获得10
8秒前
9秒前
niNe3YUE应助朴实雪兰采纳,获得10
10秒前
大意的茈完成签到 ,获得积分10
10秒前
杰尼龟完成签到,获得积分10
11秒前
打打应助红红采纳,获得30
13秒前
南沐沐完成签到 ,获得积分20
13秒前
良医完成签到 ,获得积分10
14秒前
大个应助ziwnbn采纳,获得10
14秒前
刘慧发布了新的文献求助10
15秒前
zzz完成签到 ,获得积分10
16秒前
Lucas应助Solkatt采纳,获得10
16秒前
17秒前
17秒前
江浔卿发布了新的文献求助10
18秒前
南沐沐关注了科研通微信公众号
18秒前
19秒前
思源应助Xjx6519采纳,获得10
19秒前
炒栗子发布了新的文献求助10
19秒前
无花果应助MoNeng采纳,获得10
20秒前
科研通AI2S应助爱搬玉米采纳,获得10
21秒前
善学以致用应助刘慧采纳,获得10
22秒前
搜集达人应助羽化成环采纳,获得10
22秒前
mouxq发布了新的文献求助10
23秒前
24秒前
25秒前
内向怀曼完成签到,获得积分10
26秒前
27秒前
momo完成签到,获得积分10
29秒前
流沙完成签到,获得积分10
29秒前
29秒前
30秒前
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557467
求助须知:如何正确求助?哪些是违规求助? 4642491
关于积分的说明 14668341
捐赠科研通 4583911
什么是DOI,文献DOI怎么找? 2514433
邀请新用户注册赠送积分活动 1488818
关于科研通互助平台的介绍 1459439