An artificial intelligence ultrasound system’s ability to distinguish benign from malignant follicular-patterned lesions

医学 恶性肿瘤 结核(地质) 放射科 金标准(测试) 甲状腺结节 腺瘤 甲状腺 病理 内科学 生物 古生物学
作者
Dong Xu,Yuan Wang,Hao Wu,Wenliang Lu,Wanru Chang,Jincao Yao,Meiying Yan,Chanjuan Peng,Chunxu Yang,Liping Wang,Lei Xu
出处
期刊:Frontiers in Endocrinology [Frontiers Media SA]
卷期号:13 被引量:5
标识
DOI:10.3389/fendo.2022.981403
摘要

To evaluate the application value of a generally trained artificial intelligence (AI) automatic diagnosis system in the malignancy diagnosis of follicular-patterned thyroid lesions (FPTL), including follicular thyroid carcinoma (FTC), adenomatoid hyperplasia nodule (AHN) and follicular thyroid adenoma (FTA) and compare the diagnostic performance with radiologists of different experience levels.We retrospectively reviewed 607 patients with 699 thyroid nodules that included 168 malignant nodules by using postoperative pathology as the gold standard, and compared the diagnostic performances of three radiologists (one junior, two senior) and that of AI automatic diagnosis system in malignancy diagnosis of FPTL in terms of sensitivity, specificity and accuracy, respectively. Pairwise t-test was used to evaluate the statistically significant difference.The accuracy of the AI system in malignancy diagnosis was 0.71, which was higher than the best radiologist in this study by a margin of 0.09 with a p-value of 2.08×10-5. Two radiologists had higher sensitivity (0.84 and 0.78) than that of the AI system (0.69) at the cost of having much lower specificity (0.35, 0.57 versus 0.71). One senior radiologist showed balanced sensitivity and specificity (0.62 and 0.54) but both were lower than that of the AI system.The generally trained AI automatic diagnosis system can potentially assist radiologists for distinguishing FTC from other FPTL cases that share poorly distinguishable ultrasonographical features.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
syvshc完成签到,获得积分0
刚刚
山水有佳完成签到,获得积分10
刚刚
脑洞疼应助Niercol采纳,获得20
1秒前
浅藏完成签到,获得积分10
2秒前
从容芮应助禾禾采纳,获得10
3秒前
打打应助科研通管家采纳,获得10
3秒前
浅尝离白应助科研通管家采纳,获得30
3秒前
HEIKU应助科研通管家采纳,获得10
3秒前
汉堡包应助科研通管家采纳,获得10
3秒前
3秒前
4秒前
4秒前
4秒前
HEIKU应助科研通管家采纳,获得10
4秒前
星辰大海应助科研通管家采纳,获得10
4秒前
山水有佳发布了新的文献求助10
6秒前
6秒前
7秒前
MLi发布了新的文献求助10
8秒前
leozhao完成签到,获得积分10
10秒前
陈元元K发布了新的文献求助10
10秒前
lwq发布了新的文献求助10
11秒前
11秒前
共享精神应助Reset采纳,获得10
12秒前
小娜完成签到,获得积分10
12秒前
13秒前
善学以致用应助xmfffff采纳,获得10
16秒前
阿巴阿巴发布了新的文献求助10
17秒前
小娜发布了新的文献求助10
17秒前
幸福糖豆发布了新的文献求助10
17秒前
zsn完成签到 ,获得积分10
18秒前
18秒前
CLAIR发布了新的文献求助10
18秒前
sansan发布了新的文献求助10
18秒前
19秒前
MathFun完成签到 ,获得积分10
19秒前
20秒前
mingkle应助陈元元K采纳,获得20
20秒前
白子双发布了新的文献求助10
21秒前
22秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3150225
求助须知:如何正确求助?哪些是违规求助? 2801322
关于积分的说明 7844073
捐赠科研通 2458853
什么是DOI,文献DOI怎么找? 1308673
科研通“疑难数据库(出版商)”最低求助积分说明 628556
版权声明 601721