Infrared Weak and Small Target Detection Based on Top-Hat Filtering and Multi-Feature Fuzzy Decision-Making

人工智能 计算机科学 特征(语言学) 模式识别(心理学) 假警报 计算机视觉 模糊逻辑 分割 滤波器(信号处理) 像素 红外线的 物理 语言学 光学 哲学
作者
Degui Yang,Zhengyang Bai,Junchao Zhang
出处
期刊:Electronics [Multidisciplinary Digital Publishing Institute]
卷期号:11 (21): 3549-3549 被引量:2
标识
DOI:10.3390/electronics11213549
摘要

Infrared weak and small target detection in a complex background has always been a research hotspot in the fields of area defense and long-range precision strikes. Among them, the single-frame infrared weak and small target detection technology is even more difficult to study due to factors such as lack of target motion information, complex background, and low signal-to-noise ratio. Aiming at the problem of a high false alarm rate in infrared weak and small target detection caused by the complex background edges and noise interference in infrared images, this paper proposes an infrared weak and small target detection algorithm based on top-hat filtering and multi-feature fuzzy decision-making. The algorithm first uses the multi-structural element top-hat operator to filter the original image and then obtains the suspected target area through adaptive threshold segmentation; secondly, it uses image feature algorithms, such as central pixel contrast, regional gradient, and directional gradient, to extract the feature information of the suspected target at multiple scales, and the fuzzy decision method is used for multi-feature fusion to achieve the final target detection. Finally, the performance of the proposed algorithm and several existing comparison algorithms are compared using the measured infrared sequence image data of five different scenarios. The results show that the proposed algorithm has obvious advantages in various performance indicators compared with the existing algorithms for infrared image sequences in different interference scenarios, especially for complex background types, and has a lower performance under the condition of ensuring the same detection rate and false alarm rate and in meeting the real-time requirements of the algorithm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
怕黑的静蕾应助雪原白鹿采纳,获得10
1秒前
1秒前
666发布了新的文献求助10
2秒前
sevenvictory应助TJY采纳,获得10
2秒前
佩佩发布了新的文献求助10
4秒前
传奇3应助友好旭尧采纳,获得10
4秒前
5秒前
6260发布了新的文献求助30
5秒前
小二郎应助勤劳绿毛龟采纳,获得10
5秒前
ZN发布了新的文献求助10
5秒前
犹豫小蚂蚁完成签到,获得积分10
6秒前
刘二狗发布了新的文献求助10
6秒前
7秒前
左丘秋尽完成签到,获得积分10
8秒前
8秒前
CNX完成签到,获得积分10
8秒前
CHEN__02_发布了新的文献求助10
9秒前
Djnsbj发布了新的文献求助10
9秒前
娃哈哈完成签到 ,获得积分10
10秒前
10秒前
10秒前
11秒前
11秒前
SONG完成签到,获得积分10
11秒前
ikun完成签到,获得积分20
12秒前
碧蓝老虎完成签到,获得积分10
12秒前
13秒前
汉堡包应助勤劳绿毛龟采纳,获得10
13秒前
Lucas应助勤劳绿毛龟采纳,获得10
13秒前
NexusExplorer应助勤劳绿毛龟采纳,获得10
13秒前
刘二狗完成签到,获得积分10
13秒前
英姑应助勤劳绿毛龟采纳,获得10
13秒前
共享精神应助勤劳绿毛龟采纳,获得10
13秒前
科目三应助勤劳绿毛龟采纳,获得10
13秒前
Max完成签到,获得积分10
13秒前
烟花应助勤劳绿毛龟采纳,获得10
13秒前
情怀应助勤劳绿毛龟采纳,获得10
13秒前
在水一方应助勤劳绿毛龟采纳,获得10
13秒前
Orange应助勤劳绿毛龟采纳,获得10
13秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966626
求助须知:如何正确求助?哪些是违规求助? 3512100
关于积分的说明 11161688
捐赠科研通 3246938
什么是DOI,文献DOI怎么找? 1793609
邀请新用户注册赠送积分活动 874495
科研通“疑难数据库(出版商)”最低求助积分说明 804420