Infrared Weak and Small Target Detection Based on Top-Hat Filtering and Multi-Feature Fuzzy Decision-Making

人工智能 计算机科学 特征(语言学) 模式识别(心理学) 假警报 计算机视觉 模糊逻辑 分割 滤波器(信号处理) 像素 红外线的 物理 语言学 光学 哲学
作者
Degui Yang,Zhengyang Bai,Junchao Zhang
出处
期刊:Electronics [MDPI AG]
卷期号:11 (21): 3549-3549 被引量:2
标识
DOI:10.3390/electronics11213549
摘要

Infrared weak and small target detection in a complex background has always been a research hotspot in the fields of area defense and long-range precision strikes. Among them, the single-frame infrared weak and small target detection technology is even more difficult to study due to factors such as lack of target motion information, complex background, and low signal-to-noise ratio. Aiming at the problem of a high false alarm rate in infrared weak and small target detection caused by the complex background edges and noise interference in infrared images, this paper proposes an infrared weak and small target detection algorithm based on top-hat filtering and multi-feature fuzzy decision-making. The algorithm first uses the multi-structural element top-hat operator to filter the original image and then obtains the suspected target area through adaptive threshold segmentation; secondly, it uses image feature algorithms, such as central pixel contrast, regional gradient, and directional gradient, to extract the feature information of the suspected target at multiple scales, and the fuzzy decision method is used for multi-feature fusion to achieve the final target detection. Finally, the performance of the proposed algorithm and several existing comparison algorithms are compared using the measured infrared sequence image data of five different scenarios. The results show that the proposed algorithm has obvious advantages in various performance indicators compared with the existing algorithms for infrared image sequences in different interference scenarios, especially for complex background types, and has a lower performance under the condition of ensuring the same detection rate and false alarm rate and in meeting the real-time requirements of the algorithm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
楚狂接舆完成签到,获得积分10
1秒前
Akim应助不可思宇采纳,获得10
1秒前
西瓜橙子完成签到,获得积分10
3秒前
wang完成签到 ,获得积分10
3秒前
毛慢慢发布了新的文献求助10
3秒前
如意安青完成签到,获得积分10
4秒前
Cathy发布了新的文献求助10
4秒前
芮芝完成签到 ,获得积分10
5秒前
苏素完成签到,获得积分10
7秒前
日央完成签到,获得积分10
7秒前
啦啦啦啦啦完成签到,获得积分20
7秒前
hello完成签到,获得积分10
7秒前
8秒前
yangyangyang完成签到,获得积分10
8秒前
王婧妍完成签到 ,获得积分10
8秒前
huihui完成签到,获得积分20
10秒前
10秒前
小灰灰完成签到,获得积分10
10秒前
雨恋凡尘完成签到,获得积分10
11秒前
田様应助WJ1989采纳,获得10
11秒前
自由井完成签到,获得积分10
11秒前
yao chen完成签到,获得积分10
11秒前
青春奇谈完成签到,获得积分10
11秒前
呆呆完成签到,获得积分20
12秒前
账户已注销应助huihui采纳,获得30
13秒前
Atom完成签到,获得积分10
13秒前
Jasper应助年轻的汉堡采纳,获得30
14秒前
陈功人士完成签到,获得积分20
14秒前
shengdong完成签到,获得积分10
14秒前
roselau完成签到,获得积分10
14秒前
14秒前
q792309106完成签到,获得积分10
14秒前
123123完成签到 ,获得积分20
15秒前
15秒前
15秒前
庞威完成签到 ,获得积分10
15秒前
15秒前
ry完成签到,获得积分10
17秒前
17秒前
18秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3147019
求助须知:如何正确求助?哪些是违规求助? 2798354
关于积分的说明 7828125
捐赠科研通 2454959
什么是DOI,文献DOI怎么找? 1306544
科研通“疑难数据库(出版商)”最低求助积分说明 627831
版权声明 601565