Multiagent Soft Actor–Critic for Traffic Light Timing

强化学习 计算机科学 随机性 人工智能 最大熵原理 熵(时间箭头) 数学优化 机器学习 数学 统计 物理 量子力学
作者
Lan Wu,Yuanming Wu,Cong Qin,Ye Tian
出处
期刊:Journal of transportation engineering [American Society of Civil Engineers]
卷期号:149 (2)
标识
DOI:10.1061/jtepbs.0000774
摘要

Deep reinforcement learning has strong perception and decision-making capabilities that can effectively solve the problem of continuous high-dimensional state-action space and has become the mainstream method in the field of traffic light timing. However, due to model structural defects or different strategic mechanisms of models, most deep reinforcement learning models have problems such as convergence and divergence or poor exploration capabilities. Therefore, this paper proposes a multi-agent Soft Actor–Critic (SAC) for traffic light timing. Multi-agent SAC adds an entropy item to measure the randomness of the strategy in the objective function of traditional reinforcement learning and maximizes the sum of expected reward and entropy item to improve the model’s exploration ability. The system model can learn multiple optimal timing schemes, avoid repeated selection of the same optimal timing scheme and fall into a local optimum or fail to converge. Meanwhile, it abandons low reward value strategies to reduce data storage and sampling complexity, accelerate training, and improve the stability of the system. Comparative experiments show that the method based on multi-agent SAC traffic light timing can solve the existing problems of deep reinforcement learning and improve the efficiency of vehicles passing through in different traffic scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
坚强铸海完成签到,获得积分10
2秒前
牛牛眉目发布了新的文献求助10
2秒前
2秒前
3秒前
干姜发布了新的文献求助10
4秒前
Pp发布了新的文献求助10
5秒前
666应助科研鸟采纳,获得10
5秒前
蓝天白云发布了新的文献求助10
5秒前
瓦解99发布了新的文献求助10
8秒前
yx_cheng应助zzz采纳,获得30
8秒前
Coraline应助jt采纳,获得10
9秒前
10秒前
15秒前
csy发布了新的文献求助10
17秒前
瓦解99完成签到,获得积分10
18秒前
18秒前
19秒前
张渔歌完成签到,获得积分10
19秒前
19秒前
20秒前
22秒前
asdf应助明天见采纳,获得10
22秒前
愉快天亦完成签到,获得积分10
23秒前
25秒前
25秒前
26秒前
Jasper应助科研通管家采纳,获得10
26秒前
Lucas应助科研通管家采纳,获得10
26秒前
ED应助科研通管家采纳,获得10
26秒前
彭于彦祖应助科研通管家采纳,获得30
26秒前
26秒前
26秒前
26秒前
26秒前
26秒前
好运来应助科研通管家采纳,获得10
26秒前
26秒前
26秒前
CodeCraft应助科研通管家采纳,获得10
26秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966366
求助须知:如何正确求助?哪些是违规求助? 3511778
关于积分的说明 11159852
捐赠科研通 3246372
什么是DOI,文献DOI怎么找? 1793416
邀请新用户注册赠送积分活动 874427
科研通“疑难数据库(出版商)”最低求助积分说明 804388