Multiagent Soft Actor–Critic for Traffic Light Timing

强化学习 计算机科学 随机性 人工智能 最大熵原理 熵(时间箭头) 数学优化 机器学习 数学 量子力学 统计 物理
作者
Lan Wu,Yuanming Wu,Cong Qin,Ye Tian
出处
期刊:Journal of transportation engineering [American Society of Civil Engineers]
卷期号:149 (2)
标识
DOI:10.1061/jtepbs.0000774
摘要

Deep reinforcement learning has strong perception and decision-making capabilities that can effectively solve the problem of continuous high-dimensional state-action space and has become the mainstream method in the field of traffic light timing. However, due to model structural defects or different strategic mechanisms of models, most deep reinforcement learning models have problems such as convergence and divergence or poor exploration capabilities. Therefore, this paper proposes a multi-agent Soft Actor–Critic (SAC) for traffic light timing. Multi-agent SAC adds an entropy item to measure the randomness of the strategy in the objective function of traditional reinforcement learning and maximizes the sum of expected reward and entropy item to improve the model’s exploration ability. The system model can learn multiple optimal timing schemes, avoid repeated selection of the same optimal timing scheme and fall into a local optimum or fail to converge. Meanwhile, it abandons low reward value strategies to reduce data storage and sampling complexity, accelerate training, and improve the stability of the system. Comparative experiments show that the method based on multi-agent SAC traffic light timing can solve the existing problems of deep reinforcement learning and improve the efficiency of vehicles passing through in different traffic scenarios.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
香蕉觅云应助郝56采纳,获得10
2秒前
渐变映射发布了新的文献求助10
2秒前
3秒前
3秒前
青椒超人发布了新的文献求助10
4秒前
zzzzzzz发布了新的文献求助10
4秒前
MM关闭了MM文献求助
5秒前
古德方发布了新的文献求助10
5秒前
5秒前
失眠台灯完成签到,获得积分20
5秒前
shengshiyu完成签到,获得积分10
5秒前
彭于晏应助自由的白开水采纳,获得10
7秒前
dzl发布了新的文献求助10
8秒前
小马完成签到,获得积分20
8秒前
NATURECATCHER发布了新的文献求助10
8秒前
陈科研完成签到,获得积分10
8秒前
Ava应助糟糕的铁锤采纳,获得10
9秒前
Zyl完成签到 ,获得积分10
9秒前
10秒前
852应助杨迪楠采纳,获得10
10秒前
10秒前
10秒前
量子星尘发布了新的文献求助10
11秒前
11秒前
12秒前
Akim应助念安采纳,获得10
12秒前
13秒前
youda完成签到 ,获得积分10
13秒前
乐乐应助满意小丸子采纳,获得10
13秒前
13秒前
14秒前
14秒前
yang发布了新的文献求助10
14秒前
大模型应助Herry-Jeremy采纳,获得10
14秒前
斯文败类应助牧瞻采纳,获得10
15秒前
KaleighCarlos发布了新的文献求助10
15秒前
xxx发布了新的文献求助10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5784462
求助须知:如何正确求助?哪些是违规求助? 5682526
关于积分的说明 15464250
捐赠科研通 4913580
什么是DOI,文献DOI怎么找? 2644772
邀请新用户注册赠送积分活动 1592662
关于科研通互助平台的介绍 1547148