Spatiotemporal prediction of O3 concentration based on the KNN-Prophet-LSTM model

自回归积分移动平均 自回归模型 计算机科学 时间序列 人工智能 系列(地层学) 噪音(视频) 相似性(几何) 算法 模式识别(心理学) 数据挖掘 数学 机器学习 统计 图像(数学) 古生物学 生物
作者
Biao Zhang,Chao Song,Ying Li,Xuchu Jiang
出处
期刊:Heliyon [Elsevier]
卷期号:8 (11): e11670-e11670 被引量:8
标识
DOI:10.1016/j.heliyon.2022.e11670
摘要

In this paper, a prediction method based on the KNN-Prophet-LSTM hybrid model is established by using the daily pollutant concentration data of Wuhan from January 1, 2014, to May 3, 2021, and considering the characteristics of time and space. First, the data are divided into trend items, periodic items and error items by the Prophet decomposition method. Considering the advantages of the Prophet and the Long Short-Term Memory (LSTM) models, the trend items and periodic items are predicted by the Prophet model. The LSTM model is used to predict the error terms, and the K-Nearest Neighbor algorithm (KNN) is added to fuse the spatial and temporal information to predict the ozone (O3) concentration value day by day. To highlight the effectiveness and rationality of the KNN-Prophet-LSTM hybrid model, four groups of comparative experiments are set up to compare it with the single model Autoregressive Integrated Moving Average (ARIMA), Prophet, LSTM and the hybrid model Prophet-LSTM. The experimental results show that, (1) the daily maximum 8-hour average concentration of O3 in Wuhan has a significant periodic variation. The difference in the surrounding environment will lead to the difference in O3 concentration change in the region, and the O3 concentration change of similar stations will have a high similarity. (2) The Prophet decomposition algorithm decomposes the original time series, which can effectively extract the time series information and remove noise. Thus, the prediction accuracy is obviously improved. (3) Considering the spatial information of the surrounding sites by KNN algorithm, the accuracy of the model can be further improved. Compared with the baseline model ARIMA, the accuracy is improved by approximately 49.76% on mean absolute error (MAE) and 46.81% on root mean square error (RMSE) respectively. (4) The prediction effect of the mixed model is generally better than that of the single model and possesses a higher prediction accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LYH完成签到,获得积分10
刚刚
2秒前
小锦章发布了新的文献求助10
5秒前
Lucas应助顺利琦采纳,获得10
5秒前
資鼒完成签到,获得积分10
5秒前
6秒前
传奇3应助Nowind采纳,获得10
6秒前
加油完成签到 ,获得积分20
8秒前
Lucas应助西伯利亚快车采纳,获得10
8秒前
灯火葳蕤发布了新的文献求助30
9秒前
10秒前
10秒前
12秒前
隐形曼青应助Strike采纳,获得10
12秒前
12秒前
完美世界应助爱听歌笑寒采纳,获得10
13秒前
14秒前
走着走着就散了完成签到,获得积分10
14秒前
无情胡萝卜完成签到,获得积分10
14秒前
小锦章完成签到,获得积分10
15秒前
欣慰傲薇完成签到,获得积分10
15秒前
不爱干饭发布了新的文献求助10
15秒前
16秒前
乐乐应助悦耳秋珊采纳,获得10
17秒前
18秒前
老单完成签到 ,获得积分10
18秒前
加油发布了新的文献求助10
19秒前
19秒前
欣慰傲薇发布了新的文献求助10
19秒前
yinlao完成签到,获得积分10
20秒前
20秒前
20秒前
21秒前
Orange应助尛瞐慶成采纳,获得10
22秒前
ww发布了新的文献求助10
22秒前
Cary发布了新的文献求助10
23秒前
我今停杯一问之应助kjding采纳,获得10
23秒前
24秒前
25秒前
李健的小迷弟应助顺利琦采纳,获得10
26秒前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
宽禁带半导体紫外光电探测器 388
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3142116
求助须知:如何正确求助?哪些是违规求助? 2793077
关于积分的说明 7805362
捐赠科研通 2449427
什么是DOI,文献DOI怎么找? 1303232
科研通“疑难数据库(出版商)”最低求助积分说明 626807
版权声明 601291