Quantifying and comparing the effects of human and organizational factors in electric maloperation accidents with HFACS–CatBoost and SHAP

范畴变量 计算机科学 Boosting(机器学习) 风险分析(工程) 逻辑回归 业务 人工智能 机器学习
作者
Chuan Lin,Qifeng Xu,Yifan Huang
出处
期刊:Human Factors and Ergonomics in Manufacturing & Service Industries [Wiley]
卷期号:33 (2): 164-183 被引量:3
标识
DOI:10.1002/hfm.20975
摘要

Abstract The proportion of electric maloperation accidents (EMAs) in substations caused by human and organizational factors (HOFs) has gradually increased. Although there has been some research into the factors affecting EMAs in substations, the available results are insufficient to support the interpretation of HOFs in EMAs. This article explores the relationships between the HOFs and EMAs using Human Factors Analysis and Classification System‐gradient boosting with categorical features support (HFACS–CatBoost) and Shapley Additive exPlanation (SHAP) methods. First, the HFACS framework was introduced to identify 135 EMAs in the Southern Power Grid risk causation. CatBoost was used to construct an accident classification model to analyze the important relationship between accidents and HOFs and to compare and analyze with the extreme gradient boosting (XGBoost) and the binary logistic regression (BLR) to verify the superiority of CatBoost. Finally, to solve the problem of inadequate interpretation of the CatBoost black‐box model, the SHAP value plot was applied to express the contribution degree relationship between accidents and HOFs. The results show that the above method can explore and explain the importance and contribution of HOFs in EMAs. And from this, it is concluded that poor psychological state, poor communication and coordination, inadequate supervision, and inadequate training and education are highly correlated with the occurrence of EMAs. The findings will help substation operations and maintenance staff to develop safety measures to address the confusion of HOFs in substations and prevent the occurrence of EMAs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
优秀的映萱完成签到,获得积分10
刚刚
Chang发布了新的文献求助10
1秒前
tt完成签到 ,获得积分10
2秒前
poppy发布了新的文献求助10
5秒前
wxfaixx完成签到,获得积分10
8秒前
pluto应助蓝莓酸奶采纳,获得20
12秒前
科研通AI2S应助55555采纳,获得10
16秒前
科目三应助DJ采纳,获得10
16秒前
余三心完成签到,获得积分10
17秒前
吡咯爱成环应助小鸭子采纳,获得10
18秒前
19秒前
张杰列夫完成签到 ,获得积分10
22秒前
多肉美式完成签到,获得积分10
24秒前
珥多发布了新的文献求助10
24秒前
wy.he完成签到,获得积分0
24秒前
25秒前
很酷的妞子完成签到 ,获得积分10
26秒前
DJ发布了新的文献求助10
28秒前
我将以疾风形态出击完成签到,获得积分10
28秒前
33秒前
王经纬发布了新的文献求助10
39秒前
orixero应助Young采纳,获得10
41秒前
42秒前
京港风发布了新的文献求助10
44秒前
cdercder应助晕船的海盗采纳,获得10
44秒前
44秒前
Lucas应助预言烨采纳,获得10
47秒前
48秒前
55555发布了新的文献求助10
48秒前
王经纬完成签到,获得积分10
49秒前
51秒前
hyl-tcm完成签到,获得积分10
51秒前
53秒前
GXGXGX发布了新的文献求助10
53秒前
Young发布了新的文献求助10
54秒前
科目三应助55555采纳,获得10
54秒前
54秒前
长安发布了新的文献求助10
57秒前
fengyi2999完成签到,获得积分10
59秒前
你好强大你好完成签到,获得积分20
59秒前
高分求助中
Востребованный временем 2500
Aspects of Babylonian celestial divination: the lunar eclipse tablets of Enūma Anu Enlil 1000
Kidney Transplantation: Principles and Practice 1000
Separation and Purification of Oligochitosan Based on Precipitation with Bis(2-ethylhexyl) Phosphate Anion, Re-Dissolution, and Re-Precipitation as the Hydrochloride Salt 500
The Restraining Hand: Captivity for Christ in China 500
Encyclopedia of Mental Health Reference Work 400
Mercury and Silver Mining in the Colonial Atlantic 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3375618
求助须知:如何正确求助?哪些是违规求助? 2992053
关于积分的说明 8748697
捐赠科研通 2676260
什么是DOI,文献DOI怎么找? 1465980
科研通“疑难数据库(出版商)”最低求助积分说明 678058
邀请新用户注册赠送积分活动 669750