结壳
地质学
大洋地壳
地幔(地质学)
中国海
构造学
地震学
海洋学
古生物学
俯冲
标识
DOI:10.1080/00206814.2022.2150900
摘要
A new 3D S-velocity model for the crust and upper mantle beneath the Yellow Sea, the East China Sea, the Japan Sea, and the Philippine Sea is determined by means of Rayleigh-wave analysis for depths ranging from 0 to 400 km, and the most conspicuous features of the earth structure in this region are revealed from this model. In the depth range from 5 to 30 km, the S-velocity is principally affected by the thickness of the crust. In the areas with thin crust (oceanic crust), the highest S-velocity values are determined, while the lower S-velocity values are shown for the areas with a transitional crust. For the Japan Sea, the decrease observed in crustal thickness towards the north can be the result of the back-arc spreading that formed this sea from 32 to 10 Ma. Thus, from the four models proposed to explain the oceanic structure of this sea, the model supported by the results determined in the present study is the back-arc spreading model. For the Philippine Sea, the difference in the type of crust determined for the western part and the eastern-northeastern part is consistent with the two different theories, proposed to explain the origins of both parts of this sea. In the depth range from 30 to 60 km, the western part of the Philippine Sea shows higher S-velocity values than the eastern part, because the age of western part of this sea is greater than that of eastern part. The S-velocity difference of 0.2 km/s determined between both parts of this sea implies that the temperature difference within the lithosphere may reach ~370°C. For the western part of this sea, the controversy between the previous different lithospheric-thickness determinations is solved in the present study determining a lithosphere thickness of 90 km. The Japan Sea, the East China Sea, and Okinawa Trough are characterized by thin lithosphere, thick asthenosphere, and low S-velocities. These results and other evidence suggest that from the two models proposed to explain the formation of East Asian rifting system, the model of the back-arc spreading is the most realistic model. The asthenosphere beneath all study area has been precisely located and mapped in S-velocity, for the first time. The Pacific and Philippine Sea slabs and their corresponding mantle wedges above the slabs are also mapped with S-velocities.
科研通智能强力驱动
Strongly Powered by AbleSci AI