已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Research on Design Framework of Middle School Teaching Building Based on Performance Optimization and Prediction in the Scheme Design Stage

人工神经网络 能源消耗 采光 样品(材料) 计算机科学 集合(抽象数据类型) 遗传算法 软件 过程(计算) 工程类 人工智能 模拟 机器学习 建筑工程 色谱法 操作系统 电气工程 化学 程序设计语言
作者
Meng Wang,Shuqi Cao,Daxing Chen,Guohua Ji,Qiang Ma,Yucheng Ren
出处
期刊:Buildings [Multidisciplinary Digital Publishing Institute]
卷期号:12 (11): 1897-1897 被引量:6
标识
DOI:10.3390/buildings12111897
摘要

The good indoor light environment and comfort of the teaching space are very important for students’ physical and mental health. Meanwhile, China advocates energy conservation and emission reduction policies. However, in order to obtain lower building energy consumption, higher thermal comfort, and daylighting, architects use performance simulation software to repeatedly simulate and refine, which is time-consuming and difficult to obtain the best results from three performances. Given this problem, we constructed the design framework in the early stage of the architectural design of the teaching building. In the first stage of the framework, architects optimized the performance objectives of lighting, thermal comfort, and energy consumption, and performed a cluster analysis on the optimized non-dominated solution to provide a reference for the architect. In the second stage of the framework, architects used the data generated in the optimization process to train the BP neural network and use the trained BP neural network to predict the performance of the building. In this paper, we selected Nanjing Donglu Middle School as a case study. The optimization of the building performance was assessed by a genetic algorithm, generating 3000 sets of sample data during the optimization iteration. Then, we analyzed the non-dominated solution of the sample data through the method of cluster analysis and trained the BP neural network with the sample data as a data set. The prediction model with R-values of 0.998 in the training set and test set was obtained by repeatedly debugging the number of neurons in the BP neural network. Finally, five groups of design parameters were randomly selected and brought into the trained BP neural network, and the predictive value was close to the simulated value. The construction of the framework provides design ideas for architects in the early teaching of building design and helps designers to make better decisions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xutong de完成签到,获得积分10
3秒前
7秒前
科研通AI2S应助夺命倩倩儿采纳,获得10
9秒前
12秒前
13秒前
pxb完成签到,获得积分10
14秒前
洪焕良完成签到,获得积分10
19秒前
19秒前
晚意完成签到 ,获得积分10
19秒前
雷锋发布了新的文献求助10
19秒前
平淡访冬完成签到 ,获得积分10
21秒前
李霞完成签到 ,获得积分20
22秒前
24秒前
奈布完成签到 ,获得积分10
25秒前
医疗废物专用车乘客完成签到,获得积分10
25秒前
wackykao完成签到 ,获得积分10
26秒前
思源应助nhh采纳,获得10
27秒前
clown发布了新的文献求助10
27秒前
量子星尘发布了新的文献求助10
28秒前
Yiyyan完成签到,获得积分10
31秒前
32秒前
zhyzhy完成签到,获得积分20
33秒前
霁星河完成签到,获得积分10
33秒前
linkman完成签到,获得积分10
34秒前
like411发布了新的文献求助10
37秒前
个性慕青完成签到 ,获得积分10
38秒前
玉昆完成签到 ,获得积分10
38秒前
李健的小迷弟应助仲滋滋采纳,获得10
39秒前
王某人完成签到 ,获得积分10
40秒前
SHITOU完成签到,获得积分10
41秒前
Jes发布了新的文献求助10
43秒前
半枝桃完成签到 ,获得积分10
43秒前
44秒前
仲滋滋完成签到,获得积分10
45秒前
打打应助科研通管家采纳,获得10
46秒前
咫尺天涯完成签到,获得积分10
46秒前
47秒前
平常的刺猬完成签到 ,获得积分10
47秒前
万能图书馆应助kk采纳,获得10
47秒前
懵懂的子骞完成签到 ,获得积分10
48秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956962
求助须知:如何正确求助?哪些是违规求助? 3503011
关于积分的说明 11111001
捐赠科研通 3234007
什么是DOI,文献DOI怎么找? 1787710
邀请新用户注册赠送积分活动 870713
科研通“疑难数据库(出版商)”最低求助积分说明 802234