Research on Design Framework of Middle School Teaching Building Based on Performance Optimization and Prediction in the Scheme Design Stage

人工神经网络 能源消耗 采光 样品(材料) 计算机科学 集合(抽象数据类型) 遗传算法 软件 过程(计算) 工程类 人工智能 模拟 机器学习 建筑工程 色谱法 操作系统 电气工程 化学 程序设计语言
作者
Meng Wang,Shuqi Cao,Daxing Chen,Guohua Ji,Qiang Ma,Yucheng Ren
出处
期刊:Buildings [MDPI AG]
卷期号:12 (11): 1897-1897 被引量:5
标识
DOI:10.3390/buildings12111897
摘要

The good indoor light environment and comfort of the teaching space are very important for students’ physical and mental health. Meanwhile, China advocates energy conservation and emission reduction policies. However, in order to obtain lower building energy consumption, higher thermal comfort, and daylighting, architects use performance simulation software to repeatedly simulate and refine, which is time-consuming and difficult to obtain the best results from three performances. Given this problem, we constructed the design framework in the early stage of the architectural design of the teaching building. In the first stage of the framework, architects optimized the performance objectives of lighting, thermal comfort, and energy consumption, and performed a cluster analysis on the optimized non-dominated solution to provide a reference for the architect. In the second stage of the framework, architects used the data generated in the optimization process to train the BP neural network and use the trained BP neural network to predict the performance of the building. In this paper, we selected Nanjing Donglu Middle School as a case study. The optimization of the building performance was assessed by a genetic algorithm, generating 3000 sets of sample data during the optimization iteration. Then, we analyzed the non-dominated solution of the sample data through the method of cluster analysis and trained the BP neural network with the sample data as a data set. The prediction model with R-values of 0.998 in the training set and test set was obtained by repeatedly debugging the number of neurons in the BP neural network. Finally, five groups of design parameters were randomly selected and brought into the trained BP neural network, and the predictive value was close to the simulated value. The construction of the framework provides design ideas for architects in the early teaching of building design and helps designers to make better decisions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
脑洞疼应助还单身的寒云采纳,获得10
1秒前
宜醉宜游宜睡应助aaaaaaa采纳,获得10
1秒前
1秒前
ding应助Prime采纳,获得10
1秒前
ExtroGod发布了新的文献求助10
2秒前
2秒前
852应助缓慢雅青采纳,获得10
2秒前
Lyn给Lyn的求助进行了留言
3秒前
Joel发布了新的文献求助10
4秒前
xuxieyu发布了新的文献求助10
5秒前
天熙发布了新的文献求助10
5秒前
ding应助Dreames采纳,获得10
5秒前
7秒前
Mera完成签到,获得积分10
8秒前
浮梦完成签到,获得积分10
8秒前
Jiang完成签到 ,获得积分10
8秒前
Ninomae完成签到,获得积分10
10秒前
11秒前
11秒前
Prime发布了新的文献求助10
12秒前
稻草人完成签到,获得积分10
13秒前
xuxieyu完成签到,获得积分10
14秒前
彭于晏完成签到,获得积分10
14秒前
enterdawn完成签到,获得积分10
14秒前
yar应助缓慢雅青采纳,获得10
14秒前
瓶子完成签到 ,获得积分10
16秒前
kilig完成签到 ,获得积分10
18秒前
19秒前
20秒前
20秒前
Sudon完成签到 ,获得积分10
20秒前
Hello应助心灵美凌丝采纳,获得10
21秒前
一蓑烟雨任平生应助Prime采纳,获得10
22秒前
Lucy完成签到,获得积分10
22秒前
个性的紫菜应助lenry采纳,获得30
22秒前
乂则断完成签到,获得积分20
23秒前
23秒前
赘婿应助ExtroGod采纳,获得10
23秒前
xujiexin发布了新的文献求助30
24秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
Impiego dell’associazione acetazolamide/pentossifillina nel trattamento dell’ipoacusia improvvisa idiopatica in pazienti affetti da glaucoma cronico 900
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
錢鍾書楊絳親友書札 600
Geochemistry, 2nd Edition 地球化学经典教科书第二版,不要epub版本 431
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3295341
求助须知:如何正确求助?哪些是违规求助? 2931333
关于积分的说明 8451549
捐赠科研通 2603916
什么是DOI,文献DOI怎么找? 1421479
科研通“疑难数据库(出版商)”最低求助积分说明 660864
邀请新用户注册赠送积分活动 643883