Research on Design Framework of Middle School Teaching Building Based on Performance Optimization and Prediction in the Scheme Design Stage

人工神经网络 能源消耗 采光 样品(材料) 计算机科学 集合(抽象数据类型) 遗传算法 软件 过程(计算) 工程类 人工智能 模拟 机器学习 建筑工程 色谱法 操作系统 电气工程 化学 程序设计语言
作者
Meng Wang,Shuqi Cao,Daxing Chen,Guohua Ji,Qiang Ma,Yucheng Ren
出处
期刊:Buildings [Multidisciplinary Digital Publishing Institute]
卷期号:12 (11): 1897-1897 被引量:6
标识
DOI:10.3390/buildings12111897
摘要

The good indoor light environment and comfort of the teaching space are very important for students’ physical and mental health. Meanwhile, China advocates energy conservation and emission reduction policies. However, in order to obtain lower building energy consumption, higher thermal comfort, and daylighting, architects use performance simulation software to repeatedly simulate and refine, which is time-consuming and difficult to obtain the best results from three performances. Given this problem, we constructed the design framework in the early stage of the architectural design of the teaching building. In the first stage of the framework, architects optimized the performance objectives of lighting, thermal comfort, and energy consumption, and performed a cluster analysis on the optimized non-dominated solution to provide a reference for the architect. In the second stage of the framework, architects used the data generated in the optimization process to train the BP neural network and use the trained BP neural network to predict the performance of the building. In this paper, we selected Nanjing Donglu Middle School as a case study. The optimization of the building performance was assessed by a genetic algorithm, generating 3000 sets of sample data during the optimization iteration. Then, we analyzed the non-dominated solution of the sample data through the method of cluster analysis and trained the BP neural network with the sample data as a data set. The prediction model with R-values of 0.998 in the training set and test set was obtained by repeatedly debugging the number of neurons in the BP neural network. Finally, five groups of design parameters were randomly selected and brought into the trained BP neural network, and the predictive value was close to the simulated value. The construction of the framework provides design ideas for architects in the early teaching of building design and helps designers to make better decisions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
怡然的寇发布了新的文献求助10
刚刚
科研通AI2S应助太阳下山采纳,获得50
刚刚
小羊发布了新的文献求助10
1秒前
LB发布了新的文献求助10
2秒前
2秒前
3秒前
4秒前
Orange应助cc采纳,获得10
5秒前
orixero应助中科路2020采纳,获得30
5秒前
pinging完成签到,获得积分10
7秒前
科研通AI6应助拼搏小丸子采纳,获得10
7秒前
8秒前
9秒前
hulei完成签到,获得积分10
9秒前
量子星尘发布了新的文献求助50
9秒前
10秒前
10秒前
Libra发布了新的文献求助10
10秒前
充电宝应助怡然的寇采纳,获得10
11秒前
11秒前
科研通AI5应助LB采纳,获得10
11秒前
nannan发布了新的文献求助10
12秒前
鹿鸣鱼跃完成签到 ,获得积分10
12秒前
13秒前
小羊完成签到,获得积分10
13秒前
HDrinnk完成签到,获得积分10
14秒前
14秒前
15秒前
hulei发布了新的文献求助10
15秒前
SHDeathlock发布了新的文献求助20
15秒前
科研通AI5应助酷酷的涵蕾采纳,获得10
15秒前
韶邑发布了新的文献求助10
17秒前
18秒前
creNdro发布了新的文献求助10
18秒前
火星上的夏青给火星上的夏青的求助进行了留言
18秒前
黄诺完成签到 ,获得积分10
19秒前
19秒前
量子星尘发布了新的文献求助50
20秒前
中科路2020发布了新的文献求助30
21秒前
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Socialization In The Context Of The Family: Parent-Child Interaction 600
“Now I Have My Own Key”: The Impact of Housing Stability on Recovery and Recidivism Reduction Using a Recovery Capital Framework 500
PRINCIPLES OF BEHAVIORAL ECONOMICS Microeconomics & Human Behavior 400
The Red Peril Explained: Every Man, Woman & Child Affected 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5012268
求助须知:如何正确求助?哪些是违规求助? 4253594
关于积分的说明 13254851
捐赠科研通 4056369
什么是DOI,文献DOI怎么找? 2218666
邀请新用户注册赠送积分活动 1228332
关于科研通互助平台的介绍 1150778