Can optical proximity correction solution be learned? The learning limit and a general learning framework

光学接近校正 计算机科学 极限(数学) 深度学习 人工智能 平版印刷术 机器学习 卷积神经网络 过程(计算) 物理 光电子学 数学 操作系统 数学分析
作者
Xuelong Shi,Yan Yan,Chen Li,Mingyang Xia,Bingyang Pan,Ying Gao,Wei Yuan
出处
期刊:Journal of micro/nanopatterning, materials, and metrology [SPIE - International Society for Optical Engineering]
卷期号:21 (04) 被引量:1
标识
DOI:10.1117/1.jmm.21.4.043203
摘要

BackgroundOptical proximity correction (OPC) is an indispensable technology that has been propelling the advancement of computational lithography technology. To tightly control edge placement error (EPE) and maintain lithography process window, the demands on OPC computational resources and OPC turnaround time are growing rapidly with alarming acceleration. To tame the trend, machine learning technologies have been explored; however, an in-depth discussion on OPC solution learning limit is still lacking.AimWe aim to present an in-depth discussion on OPC solution learning limit and propose a general machine learning OPC framework that can be extended to curvilinear mask OPC technology.ApproachIn this study, we first investigate the machine learning OPC learning limit by examining noninverse lithography technology (non-ILT) OPC solution space characteristics inherited from edge segmentation and control point setting rules and then propose a general machine learning OPC framework that can take full advantage of deep convolution neural network (DCNN) learning capability while being able to preserve mask data high resolution.ResultsWith this machine learning OPC framework, we have achieved models with average absolute model error <1 nm for 14-nm metal layer. With single GPU, the average time for machine learning OPC models to produce results of 3840 nm × 3840 nm area is 8.74 ms for single channel input model and 12.65 ms for six channels input model.ConclusionsFor non-ILT OPC solution, there is an intrinsic learning limit inherited from edge segmentation rules. Machine learning OPC models should be content with learning low order OPC solutions. This intrinsic learning limit of non-ILT OPC solution may diminish for ILT OPC solution when the constraint on degrees of freedom of OPC solution is lifted. The machine learning OPC framework we proposed is general and extendable to curvilinear OPC technology.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
孟艳艳完成签到,获得积分20
刚刚
1秒前
冷艳的白竹完成签到,获得积分10
1秒前
cc发布了新的文献求助20
1秒前
1秒前
sa1t完成签到,获得积分10
1秒前
Dong发布了新的文献求助10
1秒前
G蛋白偶联发布了新的文献求助30
1秒前
懦弱的安珊完成签到,获得积分10
2秒前
XZZ完成签到 ,获得积分10
2秒前
甘妮鑫发布了新的文献求助60
2秒前
2秒前
Jojo完成签到,获得积分10
3秒前
贰壹发布了新的文献求助10
3秒前
wanci应助Helen采纳,获得10
3秒前
3秒前
3秒前
黑犬发布了新的文献求助10
3秒前
4秒前
月之璇发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
4秒前
顺顺过过完成签到,获得积分10
4秒前
qaswop发布了新的文献求助10
5秒前
zzzz完成签到 ,获得积分10
5秒前
ss发布了新的文献求助10
5秒前
5秒前
黄花菜完成签到,获得积分10
5秒前
liuliuliu完成签到,获得积分10
5秒前
思源应助大胆的含卉采纳,获得10
6秒前
6秒前
6秒前
6秒前
shyotion完成签到,获得积分10
6秒前
lyw完成签到 ,获得积分10
6秒前
6秒前
www完成签到 ,获得积分10
6秒前
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5624710
求助须知:如何正确求助?哪些是违规求助? 4710500
关于积分的说明 14951127
捐赠科研通 4778615
什么是DOI,文献DOI怎么找? 2553367
邀请新用户注册赠送积分活动 1515328
关于科研通互助平台的介绍 1475603