已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Can optical proximity correction solution be learned? The learning limit and a general learning framework

光学接近校正 计算机科学 极限(数学) 深度学习 人工智能 平版印刷术 机器学习 卷积神经网络 过程(计算) 物理 光电子学 数学 操作系统 数学分析
作者
Xuelong Shi,Yan Yan,Chen Li,Mingyang Xia,Bingyang Pan,Ying Gao,Wei Yuan
出处
期刊:Journal of micro/nanopatterning, materials, and metrology [SPIE - International Society for Optical Engineering]
卷期号:21 (04) 被引量:1
标识
DOI:10.1117/1.jmm.21.4.043203
摘要

BackgroundOptical proximity correction (OPC) is an indispensable technology that has been propelling the advancement of computational lithography technology. To tightly control edge placement error (EPE) and maintain lithography process window, the demands on OPC computational resources and OPC turnaround time are growing rapidly with alarming acceleration. To tame the trend, machine learning technologies have been explored; however, an in-depth discussion on OPC solution learning limit is still lacking.AimWe aim to present an in-depth discussion on OPC solution learning limit and propose a general machine learning OPC framework that can be extended to curvilinear mask OPC technology.ApproachIn this study, we first investigate the machine learning OPC learning limit by examining noninverse lithography technology (non-ILT) OPC solution space characteristics inherited from edge segmentation and control point setting rules and then propose a general machine learning OPC framework that can take full advantage of deep convolution neural network (DCNN) learning capability while being able to preserve mask data high resolution.ResultsWith this machine learning OPC framework, we have achieved models with average absolute model error <1 nm for 14-nm metal layer. With single GPU, the average time for machine learning OPC models to produce results of 3840 nm × 3840 nm area is 8.74 ms for single channel input model and 12.65 ms for six channels input model.ConclusionsFor non-ILT OPC solution, there is an intrinsic learning limit inherited from edge segmentation rules. Machine learning OPC models should be content with learning low order OPC solutions. This intrinsic learning limit of non-ILT OPC solution may diminish for ILT OPC solution when the constraint on degrees of freedom of OPC solution is lifted. The machine learning OPC framework we proposed is general and extendable to curvilinear OPC technology.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
江枫渔火VC完成签到 ,获得积分10
刚刚
陶醉的钢笔完成签到 ,获得积分0
刚刚
tong完成签到 ,获得积分10
刚刚
yaya完成签到 ,获得积分10
刚刚
1秒前
ranj完成签到,获得积分10
2秒前
2秒前
leyellows完成签到 ,获得积分10
2秒前
5秒前
xiaxia应助爱睡觉的森森采纳,获得10
5秒前
王琳完成签到,获得积分10
6秒前
Ken921319005发布了新的文献求助10
6秒前
无语伦比完成签到 ,获得积分10
6秒前
7秒前
小杜完成签到,获得积分10
7秒前
乳酸菌小面包完成签到,获得积分10
7秒前
上官若男应助qiqibaby采纳,获得30
8秒前
Akim应助Jenny采纳,获得10
10秒前
积极大白菜真实的钥匙完成签到,获得积分10
10秒前
XIEQ发布了新的文献求助10
10秒前
自觉的夏之完成签到,获得积分20
11秒前
11秒前
卧镁铀钳完成签到 ,获得积分10
11秒前
这个真不懂完成签到,获得积分10
11秒前
YangHuilin完成签到,获得积分10
14秒前
14秒前
Lw完成签到,获得积分10
15秒前
16秒前
小湛完成签到 ,获得积分10
16秒前
兴奋的听筠完成签到,获得积分10
16秒前
17秒前
17秒前
Carl完成签到 ,获得积分10
17秒前
脑洞疼应助jimoon采纳,获得10
17秒前
xiaxia应助爱睡觉的森森采纳,获得10
19秒前
19秒前
20秒前
20秒前
星辰大海应助Lw采纳,获得10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 640
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573156
求助须知:如何正确求助?哪些是违规求助? 4659297
关于积分的说明 14724290
捐赠科研通 4599114
什么是DOI,文献DOI怎么找? 2524112
邀请新用户注册赠送积分活动 1494675
关于科研通互助平台的介绍 1464681