Can optical proximity correction solution be learned? The learning limit and a general learning framework

光学接近校正 计算机科学 极限(数学) 深度学习 人工智能 平版印刷术 机器学习 卷积神经网络 过程(计算) 物理 光电子学 数学 数学分析 操作系统
作者
Xuelong Shi,Yan Yan,Chen Li,Mingyang Xia,Bingyang Pan,Ying Gao,Wei Yuan
出处
期刊:Journal of micro/nanopatterning, materials, and metrology [SPIE - International Society for Optical Engineering]
卷期号:21 (04) 被引量:1
标识
DOI:10.1117/1.jmm.21.4.043203
摘要

BackgroundOptical proximity correction (OPC) is an indispensable technology that has been propelling the advancement of computational lithography technology. To tightly control edge placement error (EPE) and maintain lithography process window, the demands on OPC computational resources and OPC turnaround time are growing rapidly with alarming acceleration. To tame the trend, machine learning technologies have been explored; however, an in-depth discussion on OPC solution learning limit is still lacking.AimWe aim to present an in-depth discussion on OPC solution learning limit and propose a general machine learning OPC framework that can be extended to curvilinear mask OPC technology.ApproachIn this study, we first investigate the machine learning OPC learning limit by examining noninverse lithography technology (non-ILT) OPC solution space characteristics inherited from edge segmentation and control point setting rules and then propose a general machine learning OPC framework that can take full advantage of deep convolution neural network (DCNN) learning capability while being able to preserve mask data high resolution.ResultsWith this machine learning OPC framework, we have achieved models with average absolute model error <1 nm for 14-nm metal layer. With single GPU, the average time for machine learning OPC models to produce results of 3840 nm × 3840 nm area is 8.74 ms for single channel input model and 12.65 ms for six channels input model.ConclusionsFor non-ILT OPC solution, there is an intrinsic learning limit inherited from edge segmentation rules. Machine learning OPC models should be content with learning low order OPC solutions. This intrinsic learning limit of non-ILT OPC solution may diminish for ILT OPC solution when the constraint on degrees of freedom of OPC solution is lifted. The machine learning OPC framework we proposed is general and extendable to curvilinear OPC technology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Linanana完成签到,获得积分10
刚刚
刚刚
贾舒涵发布了新的文献求助10
刚刚
Sunrise完成签到,获得积分10
1秒前
HH完成签到,获得积分10
2秒前
科研通AI2S应助飞羽采纳,获得10
2秒前
风中寄云完成签到,获得积分20
2秒前
故意的傲玉应助毛慢慢采纳,获得10
2秒前
2秒前
小白发布了新的文献求助10
2秒前
3秒前
3秒前
马尼拉发布了新的文献求助10
4秒前
CodeCraft应助dildil采纳,获得10
4秒前
4秒前
cyanpomelo完成签到 ,获得积分10
5秒前
5秒前
微笑高山完成签到 ,获得积分10
5秒前
文献查找发布了新的文献求助10
5秒前
加油完成签到,获得积分20
6秒前
Sunrise发布了新的文献求助10
6秒前
tabor发布了新的文献求助10
6秒前
唐妮完成签到,获得积分10
6秒前
啵清啵完成签到,获得积分10
7秒前
7秒前
莉莉发布了新的文献求助10
7秒前
8秒前
NexusExplorer应助平常的雁凡采纳,获得10
8秒前
Silverexile完成签到,获得积分10
9秒前
9秒前
唠叨的曼易完成签到,获得积分10
9秒前
Ymj关闭了Ymj文献求助
10秒前
木木雨完成签到,获得积分10
10秒前
10秒前
Harlotte发布了新的文献求助20
10秒前
LINxu发布了新的文献求助10
10秒前
今后应助加油采纳,获得10
10秒前
moonlight发布了新的文献求助10
11秒前
IMkily完成签到,获得积分10
12秒前
深情安青应助sunzhiyu233采纳,获得10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759