Can optical proximity correction solution be learned? The learning limit and a general learning framework

光学接近校正 计算机科学 极限(数学) 深度学习 人工智能 平版印刷术 机器学习 卷积神经网络 过程(计算) 物理 光电子学 数学 操作系统 数学分析
作者
Xuelong Shi,Yan Yan,Chen Li,Mingyang Xia,Bingyang Pan,Ying Gao,Wei Yuan
出处
期刊:Journal of micro/nanopatterning, materials, and metrology [SPIE - International Society for Optical Engineering]
卷期号:21 (04) 被引量:1
标识
DOI:10.1117/1.jmm.21.4.043203
摘要

BackgroundOptical proximity correction (OPC) is an indispensable technology that has been propelling the advancement of computational lithography technology. To tightly control edge placement error (EPE) and maintain lithography process window, the demands on OPC computational resources and OPC turnaround time are growing rapidly with alarming acceleration. To tame the trend, machine learning technologies have been explored; however, an in-depth discussion on OPC solution learning limit is still lacking.AimWe aim to present an in-depth discussion on OPC solution learning limit and propose a general machine learning OPC framework that can be extended to curvilinear mask OPC technology.ApproachIn this study, we first investigate the machine learning OPC learning limit by examining noninverse lithography technology (non-ILT) OPC solution space characteristics inherited from edge segmentation and control point setting rules and then propose a general machine learning OPC framework that can take full advantage of deep convolution neural network (DCNN) learning capability while being able to preserve mask data high resolution.ResultsWith this machine learning OPC framework, we have achieved models with average absolute model error <1 nm for 14-nm metal layer. With single GPU, the average time for machine learning OPC models to produce results of 3840 nm × 3840 nm area is 8.74 ms for single channel input model and 12.65 ms for six channels input model.ConclusionsFor non-ILT OPC solution, there is an intrinsic learning limit inherited from edge segmentation rules. Machine learning OPC models should be content with learning low order OPC solutions. This intrinsic learning limit of non-ILT OPC solution may diminish for ILT OPC solution when the constraint on degrees of freedom of OPC solution is lifted. The machine learning OPC framework we proposed is general and extendable to curvilinear OPC technology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
好事成双完成签到,获得积分10
刚刚
刚刚
搞怪焱完成签到,获得积分10
1秒前
11发布了新的文献求助10
1秒前
1秒前
1秒前
猪猪hero应助Vision820采纳,获得10
1秒前
凡夕木叶发布了新的文献求助10
2秒前
激动的南烟完成签到,获得积分10
2秒前
3秒前
万能图书馆应助北方采纳,获得10
3秒前
桐桐应助刘洋采纳,获得10
3秒前
成就的紫伊应助舍予采纳,获得10
4秒前
4秒前
orixero应助纯真忆安采纳,获得10
4秒前
追寻宛海完成签到,获得积分10
5秒前
高大的静曼完成签到,获得积分10
5秒前
隐形曼青应助歇菜采纳,获得10
5秒前
量子星尘发布了新的文献求助10
5秒前
吃鱼的猫发布了新的文献求助10
6秒前
白桃发布了新的文献求助10
7秒前
8秒前
易安发布了新的文献求助10
9秒前
hwq123完成签到,获得积分10
9秒前
9秒前
11完成签到,获得积分20
10秒前
teamguichu完成签到,获得积分10
10秒前
11秒前
Charon完成签到,获得积分10
12秒前
12秒前
爆米花应助追寻宛海采纳,获得20
13秒前
13秒前
笨笨中心完成签到,获得积分10
13秒前
CipherSage应助Rena采纳,获得10
14秒前
zzzc完成签到,获得积分20
14秒前
小羊完成签到,获得积分10
15秒前
二牛完成签到,获得积分10
15秒前
呼延水云发布了新的文献求助10
15秒前
quzhenzxxx发布了新的文献求助10
16秒前
纯真忆安发布了新的文献求助10
17秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959467
求助须知:如何正确求助?哪些是违规求助? 3505690
关于积分的说明 11125214
捐赠科研通 3237503
什么是DOI,文献DOI怎么找? 1789202
邀请新用户注册赠送积分活动 871583
科研通“疑难数据库(出版商)”最低求助积分说明 802859