Can optical proximity correction solution be learned? The learning limit and a general learning framework

光学接近校正 计算机科学 极限(数学) 深度学习 人工智能 平版印刷术 机器学习 卷积神经网络 过程(计算) 物理 光电子学 数学 操作系统 数学分析
作者
Xuelong Shi,Yan Yan,Chen Li,Mingyang Xia,Bingyang Pan,Ying Gao,Wei Yuan
出处
期刊:Journal of micro/nanopatterning, materials, and metrology [SPIE - International Society for Optical Engineering]
卷期号:21 (04) 被引量:1
标识
DOI:10.1117/1.jmm.21.4.043203
摘要

BackgroundOptical proximity correction (OPC) is an indispensable technology that has been propelling the advancement of computational lithography technology. To tightly control edge placement error (EPE) and maintain lithography process window, the demands on OPC computational resources and OPC turnaround time are growing rapidly with alarming acceleration. To tame the trend, machine learning technologies have been explored; however, an in-depth discussion on OPC solution learning limit is still lacking.AimWe aim to present an in-depth discussion on OPC solution learning limit and propose a general machine learning OPC framework that can be extended to curvilinear mask OPC technology.ApproachIn this study, we first investigate the machine learning OPC learning limit by examining noninverse lithography technology (non-ILT) OPC solution space characteristics inherited from edge segmentation and control point setting rules and then propose a general machine learning OPC framework that can take full advantage of deep convolution neural network (DCNN) learning capability while being able to preserve mask data high resolution.ResultsWith this machine learning OPC framework, we have achieved models with average absolute model error <1 nm for 14-nm metal layer. With single GPU, the average time for machine learning OPC models to produce results of 3840 nm × 3840 nm area is 8.74 ms for single channel input model and 12.65 ms for six channels input model.ConclusionsFor non-ILT OPC solution, there is an intrinsic learning limit inherited from edge segmentation rules. Machine learning OPC models should be content with learning low order OPC solutions. This intrinsic learning limit of non-ILT OPC solution may diminish for ILT OPC solution when the constraint on degrees of freedom of OPC solution is lifted. The machine learning OPC framework we proposed is general and extendable to curvilinear OPC technology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助沐沐采纳,获得10
刚刚
1秒前
浮游应助幽默谷雪采纳,获得10
1秒前
crazyfish完成签到,获得积分10
2秒前
高高的从波完成签到,获得积分10
2秒前
利奈唑胺发布了新的文献求助10
2秒前
yannn完成签到,获得积分10
3秒前
可爱的函函应助婷婷采纳,获得10
3秒前
烂漫的思柔完成签到,获得积分10
3秒前
小美完成签到,获得积分10
4秒前
bkagyin应助刘禹彤采纳,获得10
4秒前
平淡一兰完成签到 ,获得积分10
4秒前
新手菜鸟发布了新的文献求助10
5秒前
6秒前
清秀青荷完成签到,获得积分10
6秒前
xf应助qq大魔王采纳,获得10
6秒前
白介发布了新的文献求助10
6秒前
陈阳完成签到,获得积分10
8秒前
8秒前
9秒前
Nolan发布了新的文献求助10
9秒前
10秒前
bobo呀完成签到,获得积分10
11秒前
11秒前
摸鱼的张发布了新的文献求助10
11秒前
12秒前
wsx4321发布了新的文献求助10
13秒前
abc完成签到 ,获得积分10
13秒前
13秒前
cai完成签到,获得积分10
13秒前
13秒前
安和2396发布了新的文献求助10
14秒前
可爱的函函应助Mrsy采纳,获得10
14秒前
15秒前
二三发布了新的文献求助10
15秒前
15秒前
852应助sonoko采纳,获得10
15秒前
婷婷发布了新的文献求助10
16秒前
缥缈静珊发布了新的文献求助10
16秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Constitutional and Administrative Law 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5264178
求助须知:如何正确求助?哪些是违规求助? 4424447
关于积分的说明 13773074
捐赠科研通 4299589
什么是DOI,文献DOI怎么找? 2359124
邀请新用户注册赠送积分活动 1355370
关于科研通互助平台的介绍 1316708