A novel centerline extraction method for overlapping fish body length measurement in aquaculture images

水产养殖 萃取(化学) 渔业 环境科学 海洋工程 生物 工程类 化学 色谱法
作者
Yunpeng Zhao,Ze-Yuan Sun,Hai Du,Chen Bi,Juan Meng,Yuan Cheng
出处
期刊:Aquacultural Engineering [Elsevier]
卷期号:99: 102302-102302 被引量:5
标识
DOI:10.1016/j.aquaeng.2022.102302
摘要

Information on the length of cultured fish is crucial to evaluate their growth status and biomass. However, existing methods to estimate fish body length are based primarily on manual sampling, which is invasive, time-consuming, and labor-intensive. In contrast, such information can be acquired via noncontact methods relying on images of the animals’ centerlines in an image. The centerline extraction method has been widely applied as an efficient approach. However, the greatest challenge in measuring the length of cultured fish is that of accurately extracting the animals’ centerlines when fish overlap in an image. To address this problem, we propose a method to obtain the centerlines of overlapping fish by processing images captured from a top-view perspective. First, fish contours are segmented using convex-concave points. Second, the contour segmentations belonging to each fish are identified by an algorithm that matches heads to tails; their centerlines are thus extracted and optimized. We conducted both laboratory and on-site experiments, and results show that the proposed method exhibited excellent performance in extracting fish centerline information, even for fish that overlapped in images captured from a top view. Moreover, it also improved on the performance of existing methods in measuring the length of cultured fish from such images. • The fish centerlines are extracted successfully under the complex culture background. • A convex-concave analysis method is used to segment contours of fish in overlapping images. • An optimization strategy of fish centerlines is done by fish head and tail matching method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
会飞的猪发布了新的文献求助10
1秒前
3秒前
破晓完成签到,获得积分10
3秒前
坚强豪英完成签到,获得积分10
3秒前
4秒前
4秒前
6秒前
8秒前
silence完成签到,获得积分20
10秒前
科研通AI2S应助范老师采纳,获得10
12秒前
大模型应助云上人采纳,获得10
12秒前
阳光的草丛完成签到,获得积分10
13秒前
oneonlycrown完成签到,获得积分10
14秒前
希望天下0贩的0应助yujie采纳,获得10
14秒前
16秒前
俭朴的又菡完成签到,获得积分10
17秒前
sui完成签到,获得积分20
17秒前
18秒前
百香果bxg完成签到 ,获得积分10
19秒前
彭于晏应助阳光的草丛采纳,获得10
19秒前
19秒前
严姸完成签到 ,获得积分20
19秒前
与你完成签到 ,获得积分10
21秒前
21秒前
云泰悟发布了新的文献求助10
22秒前
lyb发布了新的文献求助10
24秒前
科研通AI2S应助wa采纳,获得10
24秒前
24秒前
云上人发布了新的文献求助10
24秒前
夏惋清完成签到 ,获得积分0
26秒前
跳跃野狼发布了新的文献求助10
27秒前
完美世界应助阿康学科研采纳,获得10
27秒前
林夕发布了新的文献求助10
27秒前
清水发布了新的文献求助10
30秒前
老肖应助连番西采纳,获得30
30秒前
路奇k发布了新的文献求助10
30秒前
俊逸依丝完成签到,获得积分10
31秒前
小青菜完成签到,获得积分10
32秒前
32秒前
深情安青应助一叶知秋采纳,获得10
34秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3136697
求助须知:如何正确求助?哪些是违规求助? 2787724
关于积分的说明 7782985
捐赠科研通 2443808
什么是DOI,文献DOI怎么找? 1299415
科研通“疑难数据库(出版商)”最低求助积分说明 625444
版权声明 600954