Comparison of Traditional Radiomics, Deep Learning Radiomics and Fusion Methods for Axillary Lymph Node Metastasis Prediction in Breast Cancer

无线电技术 乳腺癌 腋窝淋巴结 人工智能 医学 淋巴结 深度学习 磁共振成像 机器学习 淋巴结转移 放射科 计算机科学 转移 癌症 内科学
作者
Xue Li,Lifeng Yang,Xiong Jiao
出处
期刊:Academic Radiology [Elsevier BV]
卷期号:30 (7): 1281-1287 被引量:31
标识
DOI:10.1016/j.acra.2022.10.015
摘要

Rationale and Objectives

Accurate identification of axillary lymph node (ALN) status in breast cancer patients is important for determining treatment options and avoiding axillary overtreatments. Our study aims to comprehensively compare the performance of the traditional radiomics model, deep learning radiomics model, and the fusion models in evaluating breast cancer ALN status based on dynamic contrast-enhanced-magnetic resonance imaging (DCE-MRI) images.

Materials and Methods

The handcrafted radiomics features and deep features were extracted from 3062 DCE-MRI images. The feature selection was performed by applying mutual information and feature recursive elimination algorithms. The traditional radiomics model and deep learning radiomics model were built using the optimal features and machine learning classifiers, respectively. The fusion models for distinguishing axillary lymph node status were constructed using two fusion strategies. The performance of the models with MRI-reported lymphadenopathy or suspicious nodes to evaluate axillary lymph node status was also compared.

Results

The decision fusion model, with the integration of the radiomics features and deep learning features at the decision level, achieved an area under the curve (AUC) of 0.91 (95% confidence interval (CI): 0.879-0.937), which was higher than that of the traditional radiomics model and deep learning radiomics model. The results of the decision fusion model with clinical characteristic yielded an AUC of 0.93 (95% CI: 0.899-0.951), which was also superior to other models incorporating clinical characteristic.

Conclusion

This study demonstrates the effectiveness of the fusion models for predicting axillary lymph node metastasis in breast cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
gmchen完成签到,获得积分10
2秒前
3秒前
ceeray23应助玫瑰采纳,获得10
3秒前
yu完成签到,获得积分10
4秒前
6秒前
Phi.Wang发布了新的文献求助10
6秒前
大个应助科研助手采纳,获得10
6秒前
一诺相许完成签到 ,获得积分10
7秒前
wtttt完成签到,获得积分10
8秒前
10秒前
积极以云完成签到,获得积分10
10秒前
tutoutou发布了新的文献求助10
11秒前
LLLLLLLLLLLLL完成签到,获得积分10
11秒前
且泛轻舟完成签到,获得积分10
13秒前
充电宝应助wtttt采纳,获得10
13秒前
14秒前
galaxy完成签到 ,获得积分10
14秒前
15秒前
艾莎莎5114完成签到,获得积分10
15秒前
yutj发布了新的文献求助10
15秒前
15秒前
CNAxiaozhu7应助虚幻的青槐采纳,获得10
16秒前
流沙无言完成签到 ,获得积分10
16秒前
马德里就思议完成签到,获得积分10
17秒前
17秒前
17秒前
17秒前
18秒前
18秒前
科研通AI5应助zky采纳,获得10
18秒前
俏皮的老城完成签到 ,获得积分10
18秒前
19秒前
kkkhhh发布了新的文献求助10
20秒前
fanfan发布了新的文献求助10
20秒前
20秒前
忧伤的冰薇完成签到 ,获得积分10
21秒前
Owen应助行走的sci采纳,获得10
22秒前
22秒前
yxzha发布了新的文献求助100
23秒前
研友_LNMmW8发布了新的文献求助10
23秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3737163
求助须知:如何正确求助?哪些是违规求助? 3281006
关于积分的说明 10022478
捐赠科研通 2997708
什么是DOI,文献DOI怎么找? 1644786
邀请新用户注册赠送积分活动 782147
科研通“疑难数据库(出版商)”最低求助积分说明 749707