Comparison of Traditional Radiomics, Deep Learning Radiomics and Fusion Methods for Axillary Lymph Node Metastasis Prediction in Breast Cancer

无线电技术 乳腺癌 医学 淋巴结 淋巴结转移 放射科 转移 癌症 内科学
作者
Xue Li,Lifeng Yang,Jingjing Xiong
出处
期刊:Academic Radiology [Elsevier]
卷期号:30 (7): 1281-1287 被引量:18
标识
DOI:10.1016/j.acra.2022.10.015
摘要

Rationale and Objectives

Accurate identification of axillary lymph node (ALN) status in breast cancer patients is important for determining treatment options and avoiding axillary overtreatments. Our study aims to comprehensively compare the performance of the traditional radiomics model, deep learning radiomics model, and the fusion models in evaluating breast cancer ALN status based on dynamic contrast-enhanced-magnetic resonance imaging (DCE-MRI) images.

Materials and Methods

The handcrafted radiomics features and deep features were extracted from 3062 DCE-MRI images. The feature selection was performed by applying mutual information and feature recursive elimination algorithms. The traditional radiomics model and deep learning radiomics model were built using the optimal features and machine learning classifiers, respectively. The fusion models for distinguishing axillary lymph node status were constructed using two fusion strategies. The performance of the models with MRI-reported lymphadenopathy or suspicious nodes to evaluate axillary lymph node status was also compared.

Results

The decision fusion model, with the integration of the radiomics features and deep learning features at the decision level, achieved an area under the curve (AUC) of 0.91 (95% confidence interval (CI): 0.879-0.937), which was higher than that of the traditional radiomics model and deep learning radiomics model. The results of the decision fusion model with clinical characteristic yielded an AUC of 0.93 (95% CI: 0.899-0.951), which was also superior to other models incorporating clinical characteristic.

Conclusion

This study demonstrates the effectiveness of the fusion models for predicting axillary lymph node metastasis in breast cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
虚心的羿发布了新的文献求助10
1秒前
意悟发布了新的文献求助10
1秒前
猫小海完成签到,获得积分10
1秒前
fuyibo发布了新的文献求助10
2秒前
洛杉矶的奥斯卡完成签到,获得积分10
2秒前
啊哈完成签到 ,获得积分10
3秒前
3秒前
医学小豆丁完成签到,获得积分10
4秒前
Lucas应助冷静水蓝采纳,获得10
4秒前
Charlie完成签到,获得积分10
4秒前
科研通AI2S应助好好干活采纳,获得10
4秒前
和谐的棒棒糖完成签到,获得积分10
4秒前
汉堡包应助ny960采纳,获得10
5秒前
自由度发布了新的文献求助10
5秒前
shirley发布了新的文献求助10
6秒前
冷酷头箍发布了新的文献求助10
6秒前
果酱君完成签到,获得积分10
6秒前
费费Queen完成签到,获得积分10
6秒前
6秒前
西灵壹完成签到,获得积分10
7秒前
l2023完成签到,获得积分10
7秒前
8秒前
8秒前
研友_LkYKJZ完成签到,获得积分10
9秒前
子车茗应助wst1988采纳,获得10
9秒前
缥缈的茗发布了新的文献求助10
9秒前
9秒前
JONY完成签到 ,获得积分10
10秒前
10秒前
wanci应助ZZ采纳,获得10
11秒前
专注的树完成签到,获得积分10
11秒前
Yoke完成签到,获得积分10
11秒前
12秒前
Ndqq完成签到,获得积分10
12秒前
你的背包完成签到,获得积分10
12秒前
cimy完成签到,获得积分10
13秒前
liyunma完成签到,获得积分10
13秒前
张起灵发布了新的文献求助10
13秒前
linger发布了新的文献求助10
14秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3147102
求助须知:如何正确求助?哪些是违规求助? 2798398
关于积分的说明 7828848
捐赠科研通 2455058
什么是DOI,文献DOI怎么找? 1306576
科研通“疑难数据库(出版商)”最低求助积分说明 627831
版权声明 601565