Comparative analysis of NOx reduction on Pt, Pd, and Rh catalysts by DFT calculation and microkinetic modeling

氮氧化物 催化作用 还原(数学) 化学 选择性催化还原 计算化学 物理化学 热力学 燃烧 有机化学 物理 几何学 数学
作者
Min Woo Lee,Eun Jun Lee,Kwan‐Young Lee
出处
期刊:Applied Surface Science [Elsevier]
卷期号:611: 155572-155572 被引量:8
标识
DOI:10.1016/j.apsusc.2022.155572
摘要

• DFT calculation was performed to identify the reaction mechanism of NO reduction on Pt, Pd and Rh catalysts under TWC conditions. • On the Pt catalyst, H 2 plays important roles to assist NO dissociation and to remove surface O*. • On the other hand, Rh showed strong NOx, N 2 and O 2 adsorption and NO was easily dissociated on the surface regardless of reducing agent. • Rh + Pt catalyst exhibits the excellent NO reduction activity under overall TWC condition. In this study, adsorption energies and reaction energetics on (1 1 1) surfaces of Pt, Pd and Rh were established using DFT calculation. Based on these thermodynamic results, reactant conversions and product yields of Pt, Pd and Rh catalysts under various air-fuel ratio (λ) were predicted by microkinetic modeling combined with simulated packed bed reactor. As a result, Pt catalyst efficiently utilizes H 2 in assisting NO dissociation and removing surface O * under stoichiometric and fuel-lean conditions. However, it presents high NH 3 yield under stoichiometric and fuel-lean conditions. Conversely, Rh catalyst show high NO reduction activity under fuel-rich condition while it hardly reduce NO in presence of O 2 . In order to take the advantages of both catalysts, we suggest physically-mixed Rh + Pt catalyst is excellent catalyst using the advantages of each catalyst for TWC. Consequently, it is confirmed that Pt sufficiently reduces NO using H 2 under stoichiometric and fuel-lean conditions, and Rh easily dissociates NO at low temperature under fuel-rich condition when using the Rh + Pt catalyst. We expect that identifying the reaction characteristics of TWC components under different λ conditions will help to propose future TWC design.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
希望天下0贩的0应助zv采纳,获得10
1秒前
Healer完成签到,获得积分10
1秒前
MICA关注了科研通微信公众号
1秒前
1秒前
bkagyin应助望空采纳,获得10
2秒前
高强发布了新的文献求助20
2秒前
ytzhang0587给花花的求助进行了留言
3秒前
超帅的靖完成签到,获得积分20
3秒前
陈杰发布了新的文献求助10
3秒前
3秒前
天123发布了新的文献求助10
4秒前
4秒前
大朋发布了新的文献求助10
4秒前
哆啦A梦完成签到,获得积分10
4秒前
5秒前
王肖儿发布了新的文献求助10
5秒前
壑舟完成签到,获得积分10
6秒前
茸茸茸完成签到,获得积分10
6秒前
范范778完成签到 ,获得积分10
7秒前
一切都好发布了新的文献求助30
7秒前
淡定井完成签到 ,获得积分10
7秒前
銭銭銭完成签到,获得积分20
7秒前
顺利鱼发布了新的文献求助30
7秒前
8秒前
zzzllove发布了新的文献求助10
8秒前
波波发布了新的文献求助10
9秒前
耶耶耶耶发布了新的文献求助10
9秒前
10秒前
Ava应助漫天采纳,获得10
10秒前
10秒前
10秒前
曹家如完成签到,获得积分10
10秒前
11秒前
奕师完成签到,获得积分10
11秒前
思源应助听话的初之采纳,获得10
11秒前
兰先生发布了新的文献求助10
12秒前
大朋完成签到,获得积分10
12秒前
12秒前
Lucas应助workingwalking采纳,获得10
13秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5615047
求助须知:如何正确求助?哪些是违规求助? 4699915
关于积分的说明 14905878
捐赠科研通 4740995
什么是DOI,文献DOI怎么找? 2547893
邀请新用户注册赠送积分活动 1511680
关于科研通互助平台的介绍 1473726