Comparative analysis of NOx reduction on Pt, Pd, and Rh catalysts by DFT calculation and microkinetic modeling

氮氧化物 催化作用 还原(数学) 化学 选择性催化还原 计算化学 物理化学 热力学 燃烧 有机化学 物理 几何学 数学
作者
Min Woo Lee,Eun Jun Lee,Kwan‐Young Lee
出处
期刊:Applied Surface Science [Elsevier]
卷期号:611: 155572-155572 被引量:8
标识
DOI:10.1016/j.apsusc.2022.155572
摘要

• DFT calculation was performed to identify the reaction mechanism of NO reduction on Pt, Pd and Rh catalysts under TWC conditions. • On the Pt catalyst, H 2 plays important roles to assist NO dissociation and to remove surface O*. • On the other hand, Rh showed strong NOx, N 2 and O 2 adsorption and NO was easily dissociated on the surface regardless of reducing agent. • Rh + Pt catalyst exhibits the excellent NO reduction activity under overall TWC condition. In this study, adsorption energies and reaction energetics on (1 1 1) surfaces of Pt, Pd and Rh were established using DFT calculation. Based on these thermodynamic results, reactant conversions and product yields of Pt, Pd and Rh catalysts under various air-fuel ratio (λ) were predicted by microkinetic modeling combined with simulated packed bed reactor. As a result, Pt catalyst efficiently utilizes H 2 in assisting NO dissociation and removing surface O * under stoichiometric and fuel-lean conditions. However, it presents high NH 3 yield under stoichiometric and fuel-lean conditions. Conversely, Rh catalyst show high NO reduction activity under fuel-rich condition while it hardly reduce NO in presence of O 2 . In order to take the advantages of both catalysts, we suggest physically-mixed Rh + Pt catalyst is excellent catalyst using the advantages of each catalyst for TWC. Consequently, it is confirmed that Pt sufficiently reduces NO using H 2 under stoichiometric and fuel-lean conditions, and Rh easily dissociates NO at low temperature under fuel-rich condition when using the Rh + Pt catalyst. We expect that identifying the reaction characteristics of TWC components under different λ conditions will help to propose future TWC design.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
蕴蝶完成签到,获得积分10
1秒前
达瓦里氏发布了新的文献求助10
1秒前
小蘑菇应助炙热静枫采纳,获得10
1秒前
量子星尘发布了新的文献求助10
3秒前
4秒前
bu拿下PHD绝不回头完成签到,获得积分10
7秒前
7秒前
香蕉觅云应助sun采纳,获得10
8秒前
SciGPT应助霜穿积晴采纳,获得10
11秒前
xiaobai应助科研通管家采纳,获得10
13秒前
lilivite应助科研通管家采纳,获得20
13秒前
汉堡包应助科研通管家采纳,获得10
13秒前
13秒前
乐乐应助科研通管家采纳,获得10
13秒前
xiaobai应助科研通管家采纳,获得10
13秒前
爆米花应助科研通管家采纳,获得10
13秒前
CodeCraft应助科研通管家采纳,获得10
13秒前
13秒前
科研通AI6应助科研通管家采纳,获得10
13秒前
内向千筹应助科研通管家采纳,获得10
14秒前
英姑应助科研通管家采纳,获得10
14秒前
酷酷盼秋应助duohao2023采纳,获得10
14秒前
Orange应助科研通管家采纳,获得10
14秒前
汉堡包应助科研通管家采纳,获得10
14秒前
14秒前
14秒前
15秒前
大个应助苏乘风采纳,获得20
15秒前
顺利完成签到,获得积分10
16秒前
笨笨从凝完成签到,获得积分10
16秒前
18秒前
Sakura_Chloe完成签到,获得积分20
18秒前
18秒前
柏梦岚发布了新的文献求助10
19秒前
fff关闭了fff文献求助
20秒前
20秒前
天天快乐应助有点儿小库采纳,获得10
21秒前
周小鱼完成签到,获得积分10
21秒前
科研通AI6应助孤独的万言采纳,获得10
22秒前
Lucky完成签到,获得积分10
23秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 1000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Elements of Evolutionary Genetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5453696
求助须知:如何正确求助?哪些是违规求助? 4561241
关于积分的说明 14281357
捐赠科研通 4485225
什么是DOI,文献DOI怎么找? 2456535
邀请新用户注册赠送积分活动 1447276
关于科研通互助平台的介绍 1422687