Comparative analysis of NOx reduction on Pt, Pd, and Rh catalysts by DFT calculation and microkinetic modeling

氮氧化物 催化作用 还原(数学) 化学 选择性催化还原 计算化学 物理化学 热力学 燃烧 有机化学 物理 几何学 数学
作者
Min Woo Lee,Eun Jun Lee,Kwan‐Young Lee
出处
期刊:Applied Surface Science [Elsevier]
卷期号:611: 155572-155572 被引量:8
标识
DOI:10.1016/j.apsusc.2022.155572
摘要

• DFT calculation was performed to identify the reaction mechanism of NO reduction on Pt, Pd and Rh catalysts under TWC conditions. • On the Pt catalyst, H 2 plays important roles to assist NO dissociation and to remove surface O*. • On the other hand, Rh showed strong NOx, N 2 and O 2 adsorption and NO was easily dissociated on the surface regardless of reducing agent. • Rh + Pt catalyst exhibits the excellent NO reduction activity under overall TWC condition. In this study, adsorption energies and reaction energetics on (1 1 1) surfaces of Pt, Pd and Rh were established using DFT calculation. Based on these thermodynamic results, reactant conversions and product yields of Pt, Pd and Rh catalysts under various air-fuel ratio (λ) were predicted by microkinetic modeling combined with simulated packed bed reactor. As a result, Pt catalyst efficiently utilizes H 2 in assisting NO dissociation and removing surface O * under stoichiometric and fuel-lean conditions. However, it presents high NH 3 yield under stoichiometric and fuel-lean conditions. Conversely, Rh catalyst show high NO reduction activity under fuel-rich condition while it hardly reduce NO in presence of O 2 . In order to take the advantages of both catalysts, we suggest physically-mixed Rh + Pt catalyst is excellent catalyst using the advantages of each catalyst for TWC. Consequently, it is confirmed that Pt sufficiently reduces NO using H 2 under stoichiometric and fuel-lean conditions, and Rh easily dissociates NO at low temperature under fuel-rich condition when using the Rh + Pt catalyst. We expect that identifying the reaction characteristics of TWC components under different λ conditions will help to propose future TWC design.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
xuanyu完成签到,获得积分10
1秒前
残剑月发布了新的文献求助10
1秒前
SINET完成签到,获得积分10
2秒前
Lucas应助桃源theshy采纳,获得10
2秒前
yyy完成签到,获得积分10
2秒前
爱的看到完成签到,获得积分10
3秒前
QiongYin_123完成签到 ,获得积分10
3秒前
研友_ZG4ml8发布了新的文献求助10
3秒前
xuanyu发布了新的文献求助10
3秒前
Wakakak完成签到,获得积分10
4秒前
4秒前
dh完成签到,获得积分0
5秒前
5秒前
5秒前
bbd发布了新的文献求助30
5秒前
柏小霜完成签到,获得积分10
6秒前
fjx完成签到,获得积分10
7秒前
猫咪完成签到,获得积分10
7秒前
贰壹完成签到,获得积分10
8秒前
柏小霜发布了新的文献求助10
9秒前
10秒前
完美世界应助乙醇采纳,获得10
10秒前
10秒前
111发布了新的文献求助10
11秒前
11秒前
xiaoru发布了新的文献求助10
11秒前
吴彦祖发布了新的文献求助10
11秒前
fjx发布了新的文献求助10
12秒前
12秒前
12秒前
14秒前
14秒前
Jasper应助小范采纳,获得10
14秒前
赘婿应助hyPang采纳,获得10
14秒前
15秒前
渔夫完成签到,获得积分10
16秒前
17秒前
17秒前
不安的大米完成签到,获得积分10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Process Plant Design for Chemical Engineers 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Signals, Systems, and Signal Processing 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5613711
求助须知:如何正确求助?哪些是违规求助? 4698799
关于积分的说明 14899078
捐赠科研通 4737011
什么是DOI,文献DOI怎么找? 2547125
邀请新用户注册赠送积分活动 1511067
关于科研通互助平台的介绍 1473605