Comparative analysis of NOx reduction on Pt, Pd, and Rh catalysts by DFT calculation and microkinetic modeling

氮氧化物 催化作用 还原(数学) 化学 选择性催化还原 计算化学 物理化学 热力学 燃烧 有机化学 物理 几何学 数学
作者
Min Woo Lee,Eun Jun Lee,Kwan‐Young Lee
出处
期刊:Applied Surface Science [Elsevier]
卷期号:611: 155572-155572 被引量:8
标识
DOI:10.1016/j.apsusc.2022.155572
摘要

• DFT calculation was performed to identify the reaction mechanism of NO reduction on Pt, Pd and Rh catalysts under TWC conditions. • On the Pt catalyst, H 2 plays important roles to assist NO dissociation and to remove surface O*. • On the other hand, Rh showed strong NOx, N 2 and O 2 adsorption and NO was easily dissociated on the surface regardless of reducing agent. • Rh + Pt catalyst exhibits the excellent NO reduction activity under overall TWC condition. In this study, adsorption energies and reaction energetics on (1 1 1) surfaces of Pt, Pd and Rh were established using DFT calculation. Based on these thermodynamic results, reactant conversions and product yields of Pt, Pd and Rh catalysts under various air-fuel ratio (λ) were predicted by microkinetic modeling combined with simulated packed bed reactor. As a result, Pt catalyst efficiently utilizes H 2 in assisting NO dissociation and removing surface O * under stoichiometric and fuel-lean conditions. However, it presents high NH 3 yield under stoichiometric and fuel-lean conditions. Conversely, Rh catalyst show high NO reduction activity under fuel-rich condition while it hardly reduce NO in presence of O 2 . In order to take the advantages of both catalysts, we suggest physically-mixed Rh + Pt catalyst is excellent catalyst using the advantages of each catalyst for TWC. Consequently, it is confirmed that Pt sufficiently reduces NO using H 2 under stoichiometric and fuel-lean conditions, and Rh easily dissociates NO at low temperature under fuel-rich condition when using the Rh + Pt catalyst. We expect that identifying the reaction characteristics of TWC components under different λ conditions will help to propose future TWC design.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
掠影发布了新的文献求助10
刚刚
刚刚
星辰大海应助liushu采纳,获得10
刚刚
Stella应助zjmm采纳,获得10
刚刚
刚刚
汉堡包应助婧婧婧采纳,获得10
1秒前
1秒前
彭于晏应助59采纳,获得10
1秒前
buno发布了新的文献求助30
1秒前
搜集达人应助专注的芷蕾采纳,获得10
2秒前
2秒前
Stella应助阔达的双双采纳,获得10
2秒前
2秒前
2秒前
2秒前
无极微光应助科研通管家采纳,获得20
2秒前
一叶知秋应助科研通管家采纳,获得10
2秒前
斯文败类应助科研通管家采纳,获得10
2秒前
上官若男应助科研通管家采纳,获得10
2秒前
ding应助科研通管家采纳,获得10
2秒前
SciGPT应助科研通管家采纳,获得10
3秒前
大个应助科研通管家采纳,获得10
3秒前
大模型应助科研通管家采纳,获得20
3秒前
核桃应助科研通管家采纳,获得10
3秒前
脑洞疼应助科研通管家采纳,获得10
3秒前
bkagyin应助科研通管家采纳,获得10
3秒前
贝贝应助科研通管家采纳,获得150
3秒前
雯雯发布了新的文献求助10
3秒前
所所应助科研通管家采纳,获得10
3秒前
Wendy发布了新的文献求助10
3秒前
wanci应助科研通管家采纳,获得10
3秒前
orixero应助科研通管家采纳,获得30
3秒前
YYYYZ完成签到,获得积分10
3秒前
核桃应助科研通管家采纳,获得10
3秒前
xianglinnnn发布了新的文献求助30
3秒前
浮游应助科研通管家采纳,获得10
3秒前
小二郎应助科研通管家采纳,获得10
3秒前
3秒前
隐形曼青应助科研通管家采纳,获得10
3秒前
赘婿应助yangyangyang采纳,获得10
4秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 720
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5588167
求助须知:如何正确求助?哪些是违规求助? 4671269
关于积分的说明 14786547
捐赠科研通 4624667
什么是DOI,文献DOI怎么找? 2531667
邀请新用户注册赠送积分活动 1500268
关于科研通互助平台的介绍 1468240