已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

GCNPCA: miRNA-Disease Associations Prediction Algorithm Based on Graph Convolutional Neural Networks

卷积神经网络 主成分分析 疾病 图形 计算机科学 随机森林 生物网络 小RNA 人工智能 交叉验证 特征(语言学) 人工神经网络 机器学习 模式识别(心理学) 算法 计算生物学 理论计算机科学 医学 生物 病理 基因 哲学 生物化学 语言学
作者
Jiwen Liu,Zhufang Kuang,Lei Deng
出处
期刊:IEEE/ACM Transactions on Computational Biology and Bioinformatics [Institute of Electrical and Electronics Engineers]
卷期号:20 (2): 1041-1052 被引量:7
标识
DOI:10.1109/tcbb.2022.3203564
摘要

A growing number of studies have confirmed the important role of microRNAs (miRNAs) in human diseases and the aberrant expression of miRNAs affects the onset and progression of human diseases. The discovery of disease-associated miRNAs as new biomarkers promote the progress of disease pathology and clinical medicine. However, only a small proportion of miRNA-disease correlations have been validated by biological experiments. And identifying miRNA-disease associations through biological experiments is both expensive and inefficient. Therefore, it is important to develop efficient and highly accurate computational methods to predict miRNA-disease associations. A miRNA-disease associations prediction algorithm based on Graph Convolutional neural Networks and Principal Component Analysis (GCNPCA) is proposed in this paper. Specifically, the deep topological structure information is extracted from the heterogeneous network composed of miRNA and disease nodes by a Graph Convolutional neural Network (GCN) with an additional attention mechanism. The internal attribute information of the nodes is obtained by the Principal Component Analysis (PCA). Then, the topological structure information and the node attribute information are combined to construct comprehensive feature descriptors. Finally, the Random Forest (RF) is used to train and classify these feature descriptors. In the five-fold cross-validation experiment, the AUC and AUPR for the GCNPCA algorithm are 0.983 and 0.988 respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科目三应助Mayday采纳,获得10
刚刚
刚刚
少年完成签到,获得积分10
1秒前
3秒前
3秒前
3秒前
3秒前
3秒前
3秒前
4秒前
情怀应助苗条寻雪采纳,获得30
5秒前
这斯和休完成签到,获得积分10
7秒前
安详向薇完成签到,获得积分10
10秒前
感动笑完成签到,获得积分10
13秒前
干净的时光完成签到 ,获得积分10
15秒前
云祱完成签到,获得积分10
15秒前
20秒前
kk完成签到 ,获得积分10
22秒前
香蕉觅云应助dandan采纳,获得10
22秒前
25秒前
25秒前
26秒前
斯文钢笔完成签到 ,获得积分10
27秒前
B站萧亚轩发布了新的文献求助10
27秒前
cayde发布了新的文献求助10
28秒前
28秒前
余南发布了新的文献求助10
28秒前
29秒前
华仔应助虚幻踏歌采纳,获得10
30秒前
31秒前
34秒前
Wei发布了新的文献求助10
34秒前
英俊绿柏应助荷子采纳,获得10
36秒前
37秒前
38秒前
lumi完成签到,获得积分10
39秒前
40秒前
8R60d8应助荔枝采纳,获得10
41秒前
Mayday发布了新的文献求助10
41秒前
俭朴紫寒发布了新的文献求助10
42秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956896
求助须知:如何正确求助?哪些是违规求助? 3502967
关于积分的说明 11110753
捐赠科研通 3233948
什么是DOI,文献DOI怎么找? 1787671
邀请新用户注册赠送积分活动 870713
科研通“疑难数据库(出版商)”最低求助积分说明 802210