Prediction of electron beam weld quality from weld bead surface using clustering and support vector regression

焊接 材料科学 质量(理念) 回归 聚类分析 支持向量机 电子束焊接 回归分析 曲面(拓扑) 计算机科学 模式识别(心理学) 人工智能 复合材料 统计 机器学习 数学 阴极射线 物理 电子 量子力学 几何学
作者
Sanjib Jaypuria,Venkatasainath Bondada,Santosh Kumar Gupta,Dilip Kumar Pratihar,Debalay Chakrabarti,M. N. Jha
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:211: 118677-118677 被引量:14
标识
DOI:10.1016/j.eswa.2022.118677
摘要

Destructive manual experiments are primarily used for quality assessment of electron beam welded components, which consume the resources and time significantly. Vision-based and other NDT-based quality monitoring in EBW is rarely reported, and consequently, more investigation is required. An inexpensive quality evaluation technique for the welded joints has been proposed using the weld bead surface attributes. These attributes have a good correlation with quality indicators like aspect ratio and mechanical properties of the joint. Here, electron beam welding of CuCrZr alloy was conducted to get varying weld profiles, and the surface weld attributes were measured. The model correlating top and bottom bead widths with the process variables was established using support vector regression. The predicted unlabelled weld attributes were employed as inputs for the unsupervised clustering algorithms, namely fuzzy C-mean clustering and density-based clustering. The clustering algorithms provided different clusters of the joints, namely poor, fair and good. FCM was found to be more precise for the clustering of welding data. Poor category of the joints was represented by that with partial penetration and lower aspect ratio, and the corresponding process variables’ combination could be avoided in the next iteration through the feedback. The fair category represented the joints with a high aspect ratio and keyhole-based profiles with moderate strength and ductility. The good category signified the weld joints having the maximum joint strength and ductility, and an acceptable aspect ratio with the conduction mode of welding. Keyhole-based weld profile could be obtained using high beam power (5.5 kW to 6.3 kW) with high welding speed (1000 mm/min and above). A combination of 0.1 mm oscillation amplitude and 900 Hz oscillation frequency was found to be the most favourable one, in this study.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大模型应助ericzhouxx采纳,获得10
刚刚
Fly完成签到 ,获得积分10
1秒前
东拉西扯发布了新的文献求助10
1秒前
Orange应助moyawen采纳,获得10
2秒前
3秒前
3秒前
小福发布了新的文献求助10
3秒前
张乐发布了新的文献求助10
3秒前
自然沁完成签到,获得积分10
4秒前
4秒前
5秒前
藜誌完成签到,获得积分10
7秒前
dreamode完成签到,获得积分10
7秒前
9秒前
田様应助小福采纳,获得10
9秒前
端庄的小蝴蝶完成签到,获得积分10
10秒前
天天快乐应助自信白凡采纳,获得10
10秒前
10秒前
藜誌发布了新的文献求助10
11秒前
11秒前
xcf完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助50
11秒前
bioseraph发布了新的文献求助10
12秒前
ys发布了新的文献求助10
13秒前
ZhangL发布了新的文献求助10
14秒前
15秒前
从容芸发布了新的文献求助160
16秒前
16秒前
科研通AI5应助碧蓝雨安采纳,获得10
16秒前
虚心星星完成签到,获得积分20
16秒前
微微发布了新的文献求助10
17秒前
开庆完成签到,获得积分10
17秒前
19秒前
yyy发布了新的文献求助10
19秒前
量子星尘发布了新的文献求助10
20秒前
研友_xLOMQZ完成签到,获得积分0
20秒前
20秒前
脆脆发布了新的文献求助10
20秒前
22秒前
浮游应助藜誌采纳,获得10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4601983
求助须知:如何正确求助?哪些是违规求助? 4011438
关于积分的说明 12419208
捐赠科研通 3691523
什么是DOI,文献DOI怎么找? 2035123
邀请新用户注册赠送积分活动 1068423
科研通“疑难数据库(出版商)”最低求助积分说明 952869