Prediction of electron beam weld quality from weld bead surface using clustering and support vector regression

焊接 材料科学 质量(理念) 回归 聚类分析 支持向量机 电子束焊接 回归分析 曲面(拓扑) 计算机科学 模式识别(心理学) 人工智能 复合材料 统计 机器学习 数学 阴极射线 物理 电子 量子力学 几何学
作者
Sanjib Jaypuria,Venkatasainath Bondada,Santosh Kumar Gupta,Dilip Kumar Pratihar,Debalay Chakrabarti,M. N. Jha
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:211: 118677-118677 被引量:14
标识
DOI:10.1016/j.eswa.2022.118677
摘要

Destructive manual experiments are primarily used for quality assessment of electron beam welded components, which consume the resources and time significantly. Vision-based and other NDT-based quality monitoring in EBW is rarely reported, and consequently, more investigation is required. An inexpensive quality evaluation technique for the welded joints has been proposed using the weld bead surface attributes. These attributes have a good correlation with quality indicators like aspect ratio and mechanical properties of the joint. Here, electron beam welding of CuCrZr alloy was conducted to get varying weld profiles, and the surface weld attributes were measured. The model correlating top and bottom bead widths with the process variables was established using support vector regression. The predicted unlabelled weld attributes were employed as inputs for the unsupervised clustering algorithms, namely fuzzy C-mean clustering and density-based clustering. The clustering algorithms provided different clusters of the joints, namely poor, fair and good. FCM was found to be more precise for the clustering of welding data. Poor category of the joints was represented by that with partial penetration and lower aspect ratio, and the corresponding process variables’ combination could be avoided in the next iteration through the feedback. The fair category represented the joints with a high aspect ratio and keyhole-based profiles with moderate strength and ductility. The good category signified the weld joints having the maximum joint strength and ductility, and an acceptable aspect ratio with the conduction mode of welding. Keyhole-based weld profile could be obtained using high beam power (5.5 kW to 6.3 kW) with high welding speed (1000 mm/min and above). A combination of 0.1 mm oscillation amplitude and 900 Hz oscillation frequency was found to be the most favourable one, in this study.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
悦耳羊完成签到,获得积分20
刚刚
执着从筠发布了新的文献求助10
刚刚
刚刚
XL完成签到,获得积分10
1秒前
科研通AI6应助chenhui采纳,获得10
1秒前
慕青应助夕荀采纳,获得10
1秒前
LingYi完成签到,获得积分10
1秒前
隐形曼青应助阳光的盼烟采纳,获得10
2秒前
2秒前
BUlKY发布了新的文献求助10
2秒前
RenJG发布了新的文献求助10
2秒前
xin发布了新的文献求助10
2秒前
奈芙莲完成签到,获得积分10
2秒前
3秒前
3秒前
长安发布了新的文献求助10
3秒前
烟花应助mx采纳,获得10
3秒前
4秒前
monologue完成签到,获得积分10
4秒前
sloox发布了新的文献求助10
4秒前
麻瓜小韩发布了新的文献求助10
4秒前
健忘傲柏完成签到,获得积分10
5秒前
Rjy发布了新的文献求助10
5秒前
xx_y完成签到 ,获得积分10
5秒前
5秒前
6秒前
qq发布了新的文献求助10
6秒前
猪猪hero发布了新的文献求助20
6秒前
huhdcid发布了新的文献求助30
6秒前
li发布了新的文献求助10
6秒前
7秒前
李h完成签到,获得积分10
7秒前
无极微光应助熟睡的妻子采纳,获得20
7秒前
Jeremy完成签到 ,获得积分10
8秒前
8秒前
8秒前
量子星尘发布了新的文献求助10
8秒前
景景好发布了新的文献求助10
9秒前
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5505994
求助须知:如何正确求助?哪些是违规求助? 4601482
关于积分的说明 14476730
捐赠科研通 4535445
什么是DOI,文献DOI怎么找? 2485408
邀请新用户注册赠送积分活动 1468357
关于科研通互助平台的介绍 1440869