Prediction of electron beam weld quality from weld bead surface using clustering and support vector regression

焊接 材料科学 质量(理念) 回归 聚类分析 支持向量机 电子束焊接 回归分析 曲面(拓扑) 计算机科学 模式识别(心理学) 人工智能 复合材料 统计 机器学习 数学 阴极射线 物理 电子 量子力学 几何学
作者
Sanjib Jaypuria,Venkatasainath Bondada,Santosh Kumar Gupta,Dilip Kumar Pratihar,Debalay Chakrabarti,M. N. Jha
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:211: 118677-118677 被引量:14
标识
DOI:10.1016/j.eswa.2022.118677
摘要

Destructive manual experiments are primarily used for quality assessment of electron beam welded components, which consume the resources and time significantly. Vision-based and other NDT-based quality monitoring in EBW is rarely reported, and consequently, more investigation is required. An inexpensive quality evaluation technique for the welded joints has been proposed using the weld bead surface attributes. These attributes have a good correlation with quality indicators like aspect ratio and mechanical properties of the joint. Here, electron beam welding of CuCrZr alloy was conducted to get varying weld profiles, and the surface weld attributes were measured. The model correlating top and bottom bead widths with the process variables was established using support vector regression. The predicted unlabelled weld attributes were employed as inputs for the unsupervised clustering algorithms, namely fuzzy C-mean clustering and density-based clustering. The clustering algorithms provided different clusters of the joints, namely poor, fair and good. FCM was found to be more precise for the clustering of welding data. Poor category of the joints was represented by that with partial penetration and lower aspect ratio, and the corresponding process variables’ combination could be avoided in the next iteration through the feedback. The fair category represented the joints with a high aspect ratio and keyhole-based profiles with moderate strength and ductility. The good category signified the weld joints having the maximum joint strength and ductility, and an acceptable aspect ratio with the conduction mode of welding. Keyhole-based weld profile could be obtained using high beam power (5.5 kW to 6.3 kW) with high welding speed (1000 mm/min and above). A combination of 0.1 mm oscillation amplitude and 900 Hz oscillation frequency was found to be the most favourable one, in this study.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
等待冰露完成签到 ,获得积分10
1秒前
1秒前
NexusExplorer应助七个丸子采纳,获得30
2秒前
4秒前
完犊子完成签到,获得积分20
4秒前
zengyan完成签到 ,获得积分10
5秒前
5秒前
柠檬不萌完成签到,获得积分10
6秒前
爆米花应助葡萄采纳,获得10
6秒前
8秒前
10秒前
燕子发布了新的文献求助100
10秒前
大模型应助蟹蟹采纳,获得10
12秒前
13秒前
韭菜完成签到,获得积分20
14秒前
暴龙战士完成签到,获得积分10
14秒前
GingerF应助lm采纳,获得50
16秒前
NexusExplorer应助木木采纳,获得10
16秒前
雷培发布了新的文献求助10
17秒前
笃定完成签到,获得积分10
17秒前
燕子完成签到,获得积分10
18秒前
常乐长安应助mysci采纳,获得10
19秒前
19秒前
七个丸子发布了新的文献求助30
20秒前
美丽的绿草完成签到,获得积分10
22秒前
23秒前
青空发布了新的文献求助10
24秒前
哈哈哈完成签到,获得积分10
24秒前
韭黄完成签到,获得积分20
25秒前
暴龙战士发布了新的文献求助10
26秒前
Ali发布了新的文献求助10
27秒前
灰灰灰完成签到,获得积分10
28秒前
半天发布了新的文献求助10
28秒前
昭昭找不到完成签到,获得积分10
33秒前
void科学家完成签到,获得积分10
39秒前
无限的书芹完成签到 ,获得积分10
39秒前
FashionBoy应助小研pleh采纳,获得10
39秒前
深情安青应助xixihaha采纳,获得10
40秒前
阿梅梅梅完成签到,获得积分20
41秒前
云生雾霭完成签到,获得积分10
42秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
Indomethacinのヒトにおける経皮吸収 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3997611
求助须知:如何正确求助?哪些是违规求助? 3537154
关于积分的说明 11270819
捐赠科研通 3276323
什么是DOI,文献DOI怎么找? 1806885
邀请新用户注册赠送积分活动 883576
科研通“疑难数据库(出版商)”最低求助积分说明 809975