极性(国际关系)
自动化
计算机科学
人工智能
标准化
薄层色谱法
吞吐量
机器学习
化学
色谱法
生物系统
工程类
操作系统
生物
机械工程
电信
无线
细胞
生物化学
作者
Hao Xu,Jinglong Lin,Qianyi Liu,Yuntian Chen,Jianning Zhang,Yang Yang,Michael C. Young,Yan Xu,Dongxiao Zhang,Fanyang Mo
出处
期刊:Chem
[Elsevier]
日期:2022-12-01
卷期号:8 (12): 3202-3214
被引量:9
标识
DOI:10.1016/j.chempr.2022.08.008
摘要
•An automated platform is invented to conduct high-throughput TLC analysis •4,944 standardized Rf values from 387 compounds under 17 solvent conditions •A machine-learning model facilitates Rf prediction and chromatographic separation •Higher topological polar surface area (TPSA) contributes to smaller Rf values As an essential attribute of organic compounds, polarity has a profound influence on many molecular properties. Thin-layer chromatography (TLC) represents a commonly used technique for empirical polarity estimations. Current TLC techniques need repetitive attempts to obtain suitable development conditions and have low reproducibility due to a low degree of standardization. Herein, we describe an automated system to conduct TLC analysis automatically, facilitating high-throughput collection of a large quantity of experimental data under standardized conditions. Using this dataset, machine-learning (ML) methods are employed to construct surrogate models correlating organic compound structures and their polarity reflected by retardation factor (Rf). The trained ML models are able to predict the Rf value curve of organic compounds in different solvent combinations with high accuracy, thus providing general guidelines for the selection of purification conditions and expediting the generation and analysis of quality TLC data. As an essential attribute of organic compounds, polarity has a profound influence on many molecular properties. Thin-layer chromatography (TLC) represents a commonly used technique for empirical polarity estimations. Current TLC techniques need repetitive attempts to obtain suitable development conditions and have low reproducibility due to a low degree of standardization. Herein, we describe an automated system to conduct TLC analysis automatically, facilitating high-throughput collection of a large quantity of experimental data under standardized conditions. Using this dataset, machine-learning (ML) methods are employed to construct surrogate models correlating organic compound structures and their polarity reflected by retardation factor (Rf). The trained ML models are able to predict the Rf value curve of organic compounds in different solvent combinations with high accuracy, thus providing general guidelines for the selection of purification conditions and expediting the generation and analysis of quality TLC data.
科研通智能强力驱动
Strongly Powered by AbleSci AI