High-throughput discovery of chemical structure-polarity relationships combining automation and machine-learning techniques

极性(国际关系) 自动化 计算机科学 人工智能 标准化 薄层色谱法 吞吐量 机器学习 化学 色谱法 生物系统 工程类 操作系统 生物 机械工程 电信 无线 细胞 生物化学
作者
Hao Xu,Jinglong Lin,Qianyi Liu,Yuntian Chen,Jianning Zhang,Yang Yang,Michael C. Young,Yan Xu,Dongxiao Zhang,Fanyang Mo
出处
期刊:Chem [Elsevier]
卷期号:8 (12): 3202-3214 被引量:9
标识
DOI:10.1016/j.chempr.2022.08.008
摘要

•An automated platform is invented to conduct high-throughput TLC analysis •4,944 standardized Rf values from 387 compounds under 17 solvent conditions •A machine-learning model facilitates Rf prediction and chromatographic separation •Higher topological polar surface area (TPSA) contributes to smaller Rf values As an essential attribute of organic compounds, polarity has a profound influence on many molecular properties. Thin-layer chromatography (TLC) represents a commonly used technique for empirical polarity estimations. Current TLC techniques need repetitive attempts to obtain suitable development conditions and have low reproducibility due to a low degree of standardization. Herein, we describe an automated system to conduct TLC analysis automatically, facilitating high-throughput collection of a large quantity of experimental data under standardized conditions. Using this dataset, machine-learning (ML) methods are employed to construct surrogate models correlating organic compound structures and their polarity reflected by retardation factor (Rf). The trained ML models are able to predict the Rf value curve of organic compounds in different solvent combinations with high accuracy, thus providing general guidelines for the selection of purification conditions and expediting the generation and analysis of quality TLC data. As an essential attribute of organic compounds, polarity has a profound influence on many molecular properties. Thin-layer chromatography (TLC) represents a commonly used technique for empirical polarity estimations. Current TLC techniques need repetitive attempts to obtain suitable development conditions and have low reproducibility due to a low degree of standardization. Herein, we describe an automated system to conduct TLC analysis automatically, facilitating high-throughput collection of a large quantity of experimental data under standardized conditions. Using this dataset, machine-learning (ML) methods are employed to construct surrogate models correlating organic compound structures and their polarity reflected by retardation factor (Rf). The trained ML models are able to predict the Rf value curve of organic compounds in different solvent combinations with high accuracy, thus providing general guidelines for the selection of purification conditions and expediting the generation and analysis of quality TLC data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
点点滴滴发布了新的文献求助10
4秒前
暮雨初晴完成签到 ,获得积分10
5秒前
俏皮的绝山完成签到,获得积分10
6秒前
6秒前
骄傲yy完成签到,获得积分10
7秒前
婷玉发布了新的文献求助10
7秒前
7秒前
科研通AI6应助江浔卿采纳,获得10
8秒前
nzsqaq完成签到,获得积分10
9秒前
9秒前
墨客完成签到 ,获得积分10
11秒前
net80yhm发布了新的文献求助10
11秒前
领导范儿应助细雨清心采纳,获得10
11秒前
咔嚓发布了新的文献求助10
12秒前
pluto应助科研通管家采纳,获得10
13秒前
浮游应助科研通管家采纳,获得10
13秒前
ryl完成签到 ,获得积分10
13秒前
orixero应助科研通管家采纳,获得10
13秒前
隐形曼青应助科研通管家采纳,获得10
13秒前
NexusExplorer应助科研通管家采纳,获得10
14秒前
科研通AI6应助科研通管家采纳,获得10
14秒前
浮游应助科研通管家采纳,获得10
14秒前
BareBear应助科研通管家采纳,获得20
14秒前
14秒前
Ava应助科研通管家采纳,获得10
14秒前
pluto应助科研通管家采纳,获得10
14秒前
重要的强炫完成签到,获得积分20
14秒前
AN应助科研通管家采纳,获得30
14秒前
14秒前
BareBear应助科研通管家采纳,获得10
14秒前
浮游应助科研通管家采纳,获得10
15秒前
小马甲应助科研通管家采纳,获得10
15秒前
arizaki7应助科研通管家采纳,获得10
15秒前
科研通AI6应助科研通管家采纳,获得10
15秒前
田様应助科研通管家采纳,获得10
15秒前
Hello应助科研通管家采纳,获得10
15秒前
浮游应助科研通管家采纳,获得10
15秒前
AN应助科研通管家采纳,获得30
15秒前
酷波er应助科研通管家采纳,获得10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557467
求助须知:如何正确求助?哪些是违规求助? 4642491
关于积分的说明 14668341
捐赠科研通 4583911
什么是DOI,文献DOI怎么找? 2514433
邀请新用户注册赠送积分活动 1488818
关于科研通互助平台的介绍 1459439