High-throughput discovery of chemical structure-polarity relationships combining automation and machine-learning techniques

极性(国际关系) 自动化 计算机科学 人工智能 标准化 薄层色谱法 吞吐量 机器学习 化学 色谱法 生物系统 工程类 操作系统 生物 机械工程 电信 无线 细胞 生物化学
作者
Hao Xu,Jinglong Lin,Qianyi Liu,Yuntian Chen,Jianning Zhang,Yang Yang,Michael C. Young,Yan Xu,Dongxiao Zhang,Fanyang Mo
出处
期刊:Chem [Elsevier BV]
卷期号:8 (12): 3202-3214 被引量:9
标识
DOI:10.1016/j.chempr.2022.08.008
摘要

•An automated platform is invented to conduct high-throughput TLC analysis •4,944 standardized Rf values from 387 compounds under 17 solvent conditions •A machine-learning model facilitates Rf prediction and chromatographic separation •Higher topological polar surface area (TPSA) contributes to smaller Rf values As an essential attribute of organic compounds, polarity has a profound influence on many molecular properties. Thin-layer chromatography (TLC) represents a commonly used technique for empirical polarity estimations. Current TLC techniques need repetitive attempts to obtain suitable development conditions and have low reproducibility due to a low degree of standardization. Herein, we describe an automated system to conduct TLC analysis automatically, facilitating high-throughput collection of a large quantity of experimental data under standardized conditions. Using this dataset, machine-learning (ML) methods are employed to construct surrogate models correlating organic compound structures and their polarity reflected by retardation factor (Rf). The trained ML models are able to predict the Rf value curve of organic compounds in different solvent combinations with high accuracy, thus providing general guidelines for the selection of purification conditions and expediting the generation and analysis of quality TLC data. As an essential attribute of organic compounds, polarity has a profound influence on many molecular properties. Thin-layer chromatography (TLC) represents a commonly used technique for empirical polarity estimations. Current TLC techniques need repetitive attempts to obtain suitable development conditions and have low reproducibility due to a low degree of standardization. Herein, we describe an automated system to conduct TLC analysis automatically, facilitating high-throughput collection of a large quantity of experimental data under standardized conditions. Using this dataset, machine-learning (ML) methods are employed to construct surrogate models correlating organic compound structures and their polarity reflected by retardation factor (Rf). The trained ML models are able to predict the Rf value curve of organic compounds in different solvent combinations with high accuracy, thus providing general guidelines for the selection of purification conditions and expediting the generation and analysis of quality TLC data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
完美世界应助zlttt采纳,获得10
2秒前
momo发布了新的文献求助10
4秒前
漫山完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
4秒前
5秒前
6秒前
7秒前
阿斗发布了新的文献求助10
8秒前
8秒前
踏实的火龙果完成签到 ,获得积分20
8秒前
健忘白完成签到,获得积分10
10秒前
ding应助liang采纳,获得30
11秒前
厉害tt完成签到,获得积分10
11秒前
11秒前
ding应助momo采纳,获得10
11秒前
在水一方应助吧啦吧啦采纳,获得10
11秒前
踏实的火龙果关注了科研通微信公众号
12秒前
维尼发布了新的文献求助20
13秒前
文档发布了新的文献求助10
13秒前
Rondab应助千余采纳,获得10
17秒前
17秒前
taowang发布了新的文献求助30
17秒前
一支笔画天下完成签到 ,获得积分10
17秒前
18秒前
CL完成签到 ,获得积分10
19秒前
hnlgdx完成签到,获得积分20
19秒前
Dotson发布了新的文献求助20
19秒前
出门见喜发布了新的文献求助10
21秒前
丁老三完成签到 ,获得积分10
22秒前
gky完成签到,获得积分10
23秒前
25秒前
嘻哈完成签到,获得积分10
26秒前
火力全开发布了新的文献求助10
27秒前
taowang完成签到,获得积分10
31秒前
地表飞猪应助科研通管家采纳,获得10
31秒前
研友_VZG7GZ应助科研通管家采纳,获得10
31秒前
嘿小黑应助科研通管家采纳,获得30
31秒前
天天快乐应助科研通管家采纳,获得10
31秒前
脑洞疼应助科研通管家采纳,获得10
32秒前
大个应助科研通管家采纳,获得10
32秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989297
求助须知:如何正确求助?哪些是违规求助? 3531418
关于积分的说明 11253893
捐赠科研通 3270097
什么是DOI,文献DOI怎么找? 1804884
邀请新用户注册赠送积分活动 882087
科研通“疑难数据库(出版商)”最低求助积分说明 809158