清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

High-throughput discovery of chemical structure-polarity relationships combining automation and machine-learning techniques

极性(国际关系) 自动化 计算机科学 人工智能 标准化 薄层色谱法 吞吐量 机器学习 化学 色谱法 生物系统 工程类 操作系统 生物 机械工程 电信 无线 细胞 生物化学
作者
Hao Xu,Jinglong Lin,Qianyi Liu,Yuntian Chen,Jianning Zhang,Yang Yang,Michael C. Young,Yan Xu,Dongxiao Zhang,Fanyang Mo
出处
期刊:Chem [Elsevier]
卷期号:8 (12): 3202-3214 被引量:9
标识
DOI:10.1016/j.chempr.2022.08.008
摘要

•An automated platform is invented to conduct high-throughput TLC analysis •4,944 standardized Rf values from 387 compounds under 17 solvent conditions •A machine-learning model facilitates Rf prediction and chromatographic separation •Higher topological polar surface area (TPSA) contributes to smaller Rf values As an essential attribute of organic compounds, polarity has a profound influence on many molecular properties. Thin-layer chromatography (TLC) represents a commonly used technique for empirical polarity estimations. Current TLC techniques need repetitive attempts to obtain suitable development conditions and have low reproducibility due to a low degree of standardization. Herein, we describe an automated system to conduct TLC analysis automatically, facilitating high-throughput collection of a large quantity of experimental data under standardized conditions. Using this dataset, machine-learning (ML) methods are employed to construct surrogate models correlating organic compound structures and their polarity reflected by retardation factor (Rf). The trained ML models are able to predict the Rf value curve of organic compounds in different solvent combinations with high accuracy, thus providing general guidelines for the selection of purification conditions and expediting the generation and analysis of quality TLC data. As an essential attribute of organic compounds, polarity has a profound influence on many molecular properties. Thin-layer chromatography (TLC) represents a commonly used technique for empirical polarity estimations. Current TLC techniques need repetitive attempts to obtain suitable development conditions and have low reproducibility due to a low degree of standardization. Herein, we describe an automated system to conduct TLC analysis automatically, facilitating high-throughput collection of a large quantity of experimental data under standardized conditions. Using this dataset, machine-learning (ML) methods are employed to construct surrogate models correlating organic compound structures and their polarity reflected by retardation factor (Rf). The trained ML models are able to predict the Rf value curve of organic compounds in different solvent combinations with high accuracy, thus providing general guidelines for the selection of purification conditions and expediting the generation and analysis of quality TLC data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
19秒前
jingjili发布了新的文献求助10
24秒前
yufanhui应助Wei采纳,获得20
25秒前
27秒前
852应助樱桃味的火苗采纳,获得10
32秒前
46秒前
47秒前
chcmy完成签到 ,获得积分0
51秒前
飞翔的企鹅完成签到,获得积分10
53秒前
1分钟前
1分钟前
清风拂山岗完成签到,获得积分10
1分钟前
Wei发布了新的文献求助10
1分钟前
1分钟前
lanxinge完成签到 ,获得积分10
1分钟前
1分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
3分钟前
3分钟前
张可完成签到 ,获得积分10
3分钟前
CodeCraft应助gszy1975采纳,获得10
3分钟前
3分钟前
乐乐应助科研通管家采纳,获得30
3分钟前
彭于晏应助科研通管家采纳,获得10
3分钟前
3分钟前
初心完成签到 ,获得积分10
4分钟前
4分钟前
TXZ06发布了新的文献求助10
4分钟前
5分钟前
古芍昂完成签到 ,获得积分10
5分钟前
5分钟前
5分钟前
6分钟前
鹤鸣发布了新的文献求助10
6分钟前
6分钟前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162343
求助须知:如何正确求助?哪些是违规求助? 2813330
关于积分的说明 7899736
捐赠科研通 2472848
什么是DOI,文献DOI怎么找? 1316533
科研通“疑难数据库(出版商)”最低求助积分说明 631375
版权声明 602142