Research on Dual-Dimensional Entity Association-Based Question and Answering Technology for Smart Medicine

计算机科学 答疑 情报检索 维数(图论) 联想(心理学) 语义学(计算机科学) 人工智能 相似性(几何) 对偶(语法数字) 稳健性(进化) 自然语言处理 程序设计语言 图像(数学) 纯数学 基因 认识论 文学类 数学 化学 生物化学 哲学 艺术
作者
Pengjun Zhai,Yu Fang,Xue Cui
出处
期刊:Mobile Information Systems [IOS Press]
卷期号:2022: 1-12
标识
DOI:10.1155/2022/7229389
摘要

With the development of the Internet of Things, intelligent medical devices and intelligent consultation platforms have been rapidly popularized, providing great convenience for medical treatment to patients and consultation to doctors. In the face of large-scale medical electronic information data, how to automatically and accurately learn professional knowledge and realize application is very important. The existing intelligent medical question answering models typically use query expansion to improve the accuracy of model matching answers but ignore the corresponding entity association between questions and answers, and the method of randomly generating negative samples cannot train the model to capture more semantic information. To solve these problems, a question answering method based on dual-dimensional entity association for intelligent medicine is proposed. This method learns semantics from the dual-dimension of question and answer respectively. In the question dimension, query extension words with strong relevance to query intention are obtained through entity association in the medical knowledge graph. In the answer dimension, answer sentences are segmented and sampled by employing a variety of similarity distances to generate negative samples in different ranges, provide different levels of correlation information between entities for model training, and then integrate the trained model to improve the accuracy and robustness of the question answering model. The experimental results show that the question answering model proposed in this paper has a good improvement in accuracy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
iuu完成签到,获得积分10
刚刚
白辉发布了新的文献求助10
刚刚
刚刚
xiangsi发布了新的文献求助10
刚刚
有点抽风发布了新的文献求助50
1秒前
小丁发布了新的文献求助10
1秒前
明亮凡梦完成签到,获得积分10
1秒前
sunny完成签到,获得积分10
1秒前
辉HUI发布了新的文献求助10
3秒前
JACK发布了新的文献求助10
3秒前
大模型应助tiantian采纳,获得10
4秒前
123应助秋露凝雪采纳,获得10
4秒前
Starry完成签到,获得积分10
5秒前
5秒前
俊秀的班完成签到,获得积分20
6秒前
6秒前
ABC发布了新的文献求助10
6秒前
666关注了科研通微信公众号
6秒前
Hello应助不得采纳,获得10
7秒前
啊懂完成签到,获得积分10
8秒前
小二郎应助ddd采纳,获得10
9秒前
冷静的之卉完成签到,获得积分10
9秒前
66完成签到,获得积分10
9秒前
10秒前
10秒前
66发布了新的文献求助10
11秒前
QWE发布了新的文献求助10
11秒前
wisdom应助kiki采纳,获得20
11秒前
子车茗应助phenory采纳,获得10
11秒前
Twinkle完成签到,获得积分10
11秒前
12秒前
Kw完成签到,获得积分10
14秒前
15秒前
JamesPei应助辉HUI采纳,获得10
15秒前
15秒前
16秒前
17秒前
VDC发布了新的文献求助10
17秒前
yiwen完成签到,获得积分10
17秒前
qqq关闭了qqq文献求助
18秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 2000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3743782
求助须知:如何正确求助?哪些是违规求助? 3286427
关于积分的说明 10050288
捐赠科研通 3002956
什么是DOI,文献DOI怎么找? 1648631
邀请新用户注册赠送积分活动 784708
科研通“疑难数据库(出版商)”最低求助积分说明 750802