Feature-level fusion based on spatial-temporal of pervasive EEG for depression recognition

脑电图 计算机科学 模式识别(心理学) 人工智能 特征(语言学) 传感器融合 心理学 语言学 精神科 哲学
作者
Bingtao Zhang,Dan Wei,Guanghui Yan,Tao Lei,Haishu Cai,Zhifei Yang
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:226: 107113-107113 被引量:18
标识
DOI:10.1016/j.cmpb.2022.107113
摘要

In view of the depression characteristics such as high prevalence, high disability rate, high fatality rate, and high recurrence rate, early identification and early intervention are the most effective methods to prevent irreversible damage of brain function over time. The traditional method of depression recognition based on questionnaires and interviews is time-consuming and labor-intensive, and heavily depends on the doctor's subjective experience. Therefore, accurate, convenient and effective recognition of depression has important social value and scientific significance.This paper proposes a depression recognition framework based on feature-level fusion of spatial-temporal pervasive electroencephalography (EEG). Time series EEG data were collected by portable three-electrode EEG acquisition instrument, and mapped to a spatial complex network called visibility graph (VG). Then temporal EEG features and spatial VG metric features were extracted and selected. Based on the correlation between features and categories, the differences in contribution of individual feature are explored, and different contribution coefficients are assigned to different features as the data basis of feature-level fusion to ensure the diversity of data. A cascade forest model based on three different decision forests is designed to realize the efficient depression recognition using spatial-temporal feature-level fusion data.Experimental data were obtained from 26 depressed patients and 29 healthy controls (HC). The results of multiple control experiments show that compared with single type feature, feature-level fusion without contribution coefficient, and independent classifiers, the feature-level method with contribution coefficient of spatial-temporal has a stronger recognition ability of depression, and the highest accuracy is 92.48%.Feature-level fusion method provides an effective computer-aided tool for rapid clinical diagnosis of depression.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
夏侯德东完成签到,获得积分10
1秒前
zly完成签到 ,获得积分10
2秒前
大牛顿发布了新的文献求助10
2秒前
NexusExplorer应助jiao采纳,获得10
2秒前
小白发布了新的文献求助10
2秒前
追寻翠柏完成签到 ,获得积分10
3秒前
不会取名字完成签到,获得积分10
3秒前
DayLight完成签到,获得积分10
3秒前
Lucas应助我好困采纳,获得10
3秒前
人类之光完成签到,获得积分10
4秒前
tym完成签到,获得积分10
4秒前
悠悠小土豆完成签到,获得积分10
4秒前
4秒前
快乐的晟睿完成签到,获得积分10
4秒前
5秒前
Zx_1993应助咸鱼采纳,获得50
5秒前
汉堡包应助HI采纳,获得10
5秒前
Zhang_Jt107完成签到,获得积分10
5秒前
5秒前
我爱科研完成签到 ,获得积分10
6秒前
爱吃点大米饭完成签到 ,获得积分10
6秒前
大个应助zl12采纳,获得10
7秒前
微凉完成签到 ,获得积分10
7秒前
听话的尔竹完成签到 ,获得积分10
8秒前
狮子座发布了新的文献求助10
8秒前
好运旺旺完成签到 ,获得积分20
8秒前
李爱国应助流星噬月采纳,获得10
8秒前
9秒前
噜噜璐发布了新的文献求助30
9秒前
哟哟哟完成签到,获得积分10
10秒前
10秒前
XSB完成签到,获得积分10
10秒前
星辰大海应助ljf采纳,获得10
10秒前
HHHH发布了新的文献求助10
10秒前
12秒前
12秒前
灵巧的匪发布了新的文献求助60
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
Vertebrate Palaeontology, 5th Edition 500
Fiction e non fiction: storia, teorie e forme 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5327126
求助须知:如何正确求助?哪些是违规求助? 4467261
关于积分的说明 13900385
捐赠科研通 4359816
什么是DOI,文献DOI怎么找? 2394793
邀请新用户注册赠送积分活动 1388362
关于科研通互助平台的介绍 1359091