Feature-level fusion based on spatial-temporal of pervasive EEG for depression recognition

脑电图 计算机科学 模式识别(心理学) 人工智能 特征(语言学) 传感器融合 心理学 语言学 精神科 哲学
作者
Bingtao Zhang,Dan Wei,Guanghui Yan,Tao Lei,Haishu Cai,Zhifei Yang
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:226: 107113-107113 被引量:16
标识
DOI:10.1016/j.cmpb.2022.107113
摘要

In view of the depression characteristics such as high prevalence, high disability rate, high fatality rate, and high recurrence rate, early identification and early intervention are the most effective methods to prevent irreversible damage of brain function over time. The traditional method of depression recognition based on questionnaires and interviews is time-consuming and labor-intensive, and heavily depends on the doctor's subjective experience. Therefore, accurate, convenient and effective recognition of depression has important social value and scientific significance.This paper proposes a depression recognition framework based on feature-level fusion of spatial-temporal pervasive electroencephalography (EEG). Time series EEG data were collected by portable three-electrode EEG acquisition instrument, and mapped to a spatial complex network called visibility graph (VG). Then temporal EEG features and spatial VG metric features were extracted and selected. Based on the correlation between features and categories, the differences in contribution of individual feature are explored, and different contribution coefficients are assigned to different features as the data basis of feature-level fusion to ensure the diversity of data. A cascade forest model based on three different decision forests is designed to realize the efficient depression recognition using spatial-temporal feature-level fusion data.Experimental data were obtained from 26 depressed patients and 29 healthy controls (HC). The results of multiple control experiments show that compared with single type feature, feature-level fusion without contribution coefficient, and independent classifiers, the feature-level method with contribution coefficient of spatial-temporal has a stronger recognition ability of depression, and the highest accuracy is 92.48%.Feature-level fusion method provides an effective computer-aided tool for rapid clinical diagnosis of depression.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yujd发布了新的文献求助10
1秒前
1秒前
th余淮完成签到,获得积分10
1秒前
2秒前
GBY发布了新的文献求助10
2秒前
3秒前
aaggaga完成签到,获得积分10
3秒前
Akim应助缘起缘灭采纳,获得10
3秒前
孤独的匕发布了新的文献求助10
3秒前
Hello应助搞怪的怀蕊采纳,获得10
3秒前
3秒前
杨杨完成签到,获得积分10
4秒前
4秒前
顾建瑜发布了新的文献求助10
4秒前
5秒前
5秒前
Chhc2发布了新的文献求助10
5秒前
5秒前
默笙完成签到 ,获得积分10
6秒前
ZSW发布了新的文献求助10
6秒前
6秒前
6秒前
lynn_zhang完成签到,获得积分10
6秒前
yujd完成签到,获得积分10
7秒前
zcz完成签到 ,获得积分10
7秒前
深情电脑应助gyl采纳,获得10
8秒前
臭臭发布了新的文献求助10
8秒前
12umi发布了新的文献求助10
9秒前
英姑应助丽丽呀采纳,获得10
10秒前
鱼海寻俞发布了新的文献求助10
10秒前
ZMT发布了新的文献求助10
10秒前
科研通AI2S应助科研小笨猪采纳,获得10
10秒前
哎嘿应助科研小笨猪采纳,获得10
10秒前
10秒前
Amor发布了新的文献求助10
10秒前
赫青亦完成签到 ,获得积分10
11秒前
高挑的若雁完成签到 ,获得积分10
12秒前
巨人文完成签到,获得积分10
12秒前
1no发布了新的文献求助20
12秒前
ywl完成签到 ,获得积分10
13秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
A new approach of magnetic circular dichroism to the electronic state analysis of intact photosynthetic pigments 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148940
求助须知:如何正确求助?哪些是违规求助? 2800005
关于积分的说明 7837927
捐赠科研通 2457512
什么是DOI,文献DOI怎么找? 1307891
科研通“疑难数据库(出版商)”最低求助积分说明 628322
版权声明 601685