已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Feature-level fusion based on spatial-temporal of pervasive EEG for depression recognition

脑电图 计算机科学 模式识别(心理学) 人工智能 特征(语言学) 传感器融合 心理学 语言学 精神科 哲学
作者
Bingtao Zhang,Dan Wei,Guanghui Yan,Tao Lei,Haishu Cai,Zhifei Yang
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:226: 107113-107113 被引量:18
标识
DOI:10.1016/j.cmpb.2022.107113
摘要

In view of the depression characteristics such as high prevalence, high disability rate, high fatality rate, and high recurrence rate, early identification and early intervention are the most effective methods to prevent irreversible damage of brain function over time. The traditional method of depression recognition based on questionnaires and interviews is time-consuming and labor-intensive, and heavily depends on the doctor's subjective experience. Therefore, accurate, convenient and effective recognition of depression has important social value and scientific significance.This paper proposes a depression recognition framework based on feature-level fusion of spatial-temporal pervasive electroencephalography (EEG). Time series EEG data were collected by portable three-electrode EEG acquisition instrument, and mapped to a spatial complex network called visibility graph (VG). Then temporal EEG features and spatial VG metric features were extracted and selected. Based on the correlation between features and categories, the differences in contribution of individual feature are explored, and different contribution coefficients are assigned to different features as the data basis of feature-level fusion to ensure the diversity of data. A cascade forest model based on three different decision forests is designed to realize the efficient depression recognition using spatial-temporal feature-level fusion data.Experimental data were obtained from 26 depressed patients and 29 healthy controls (HC). The results of multiple control experiments show that compared with single type feature, feature-level fusion without contribution coefficient, and independent classifiers, the feature-level method with contribution coefficient of spatial-temporal has a stronger recognition ability of depression, and the highest accuracy is 92.48%.Feature-level fusion method provides an effective computer-aided tool for rapid clinical diagnosis of depression.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
1234完成签到,获得积分20
2秒前
nenoaowu发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
7秒前
YOLO完成签到 ,获得积分10
8秒前
9秒前
9秒前
Sucrapipple完成签到,获得积分10
11秒前
快乐闭月发布了新的文献求助10
11秒前
量子星尘发布了新的文献求助10
12秒前
我要发文章完成签到 ,获得积分10
12秒前
匆匆完成签到 ,获得积分10
13秒前
241006014完成签到,获得积分10
13秒前
鱼yu发布了新的文献求助10
14秒前
科研通AI5应助Lz0330采纳,获得10
14秒前
zichun发布了新的文献求助10
15秒前
yxm完成签到 ,获得积分10
16秒前
Leif完成签到 ,获得积分0
20秒前
鱼yu完成签到,获得积分10
22秒前
24秒前
刘雨森完成签到 ,获得积分10
24秒前
25秒前
乐观的饭饭完成签到 ,获得积分10
26秒前
小谭完成签到 ,获得积分10
28秒前
研友_VZG7GZ应助鱼yu采纳,获得10
28秒前
31秒前
枯叶蝶完成签到 ,获得积分10
33秒前
123完成签到 ,获得积分10
33秒前
王王完成签到 ,获得积分10
33秒前
量子星尘发布了新的文献求助10
34秒前
Angenstern完成签到 ,获得积分10
38秒前
科研通AI5应助kyt采纳,获得10
41秒前
量子星尘发布了新的文献求助10
47秒前
47秒前
Bazinga完成签到,获得积分10
52秒前
kyt发布了新的文献求助10
54秒前
小洛完成签到 ,获得积分10
56秒前
Jaclyn完成签到 ,获得积分10
57秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
ALUMINUM STANDARDS AND DATA 500
Walter Gilbert: Selected Works 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3666285
求助须知:如何正确求助?哪些是违规求助? 3225351
关于积分的说明 9762628
捐赠科研通 2935243
什么是DOI,文献DOI怎么找? 1607522
邀请新用户注册赠送积分活动 759252
科研通“疑难数据库(出版商)”最低求助积分说明 735185