Feature-level fusion based on spatial-temporal of pervasive EEG for depression recognition

脑电图 计算机科学 模式识别(心理学) 人工智能 特征(语言学) 传感器融合 心理学 语言学 精神科 哲学
作者
Bingtao Zhang,Dan Wei,Guanghui Yan,Tao Lei,Haishu Cai,Zhifei Yang
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:226: 107113-107113 被引量:18
标识
DOI:10.1016/j.cmpb.2022.107113
摘要

In view of the depression characteristics such as high prevalence, high disability rate, high fatality rate, and high recurrence rate, early identification and early intervention are the most effective methods to prevent irreversible damage of brain function over time. The traditional method of depression recognition based on questionnaires and interviews is time-consuming and labor-intensive, and heavily depends on the doctor's subjective experience. Therefore, accurate, convenient and effective recognition of depression has important social value and scientific significance.This paper proposes a depression recognition framework based on feature-level fusion of spatial-temporal pervasive electroencephalography (EEG). Time series EEG data were collected by portable three-electrode EEG acquisition instrument, and mapped to a spatial complex network called visibility graph (VG). Then temporal EEG features and spatial VG metric features were extracted and selected. Based on the correlation between features and categories, the differences in contribution of individual feature are explored, and different contribution coefficients are assigned to different features as the data basis of feature-level fusion to ensure the diversity of data. A cascade forest model based on three different decision forests is designed to realize the efficient depression recognition using spatial-temporal feature-level fusion data.Experimental data were obtained from 26 depressed patients and 29 healthy controls (HC). The results of multiple control experiments show that compared with single type feature, feature-level fusion without contribution coefficient, and independent classifiers, the feature-level method with contribution coefficient of spatial-temporal has a stronger recognition ability of depression, and the highest accuracy is 92.48%.Feature-level fusion method provides an effective computer-aided tool for rapid clinical diagnosis of depression.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
隐形曼青应助LY采纳,获得10
刚刚
罐头胖听发布了新的文献求助10
1秒前
1秒前
1秒前
lixm发布了新的文献求助10
1秒前
ENHNG完成签到,获得积分10
1秒前
chentong完成签到 ,获得积分10
2秒前
道以文完成签到,获得积分10
3秒前
爱吃脑袋瓜完成签到,获得积分10
3秒前
忧郁紫翠完成签到,获得积分10
3秒前
Zel博博完成签到,获得积分10
3秒前
雪婆发布了新的文献求助10
3秒前
4秒前
亚琳完成签到,获得积分10
5秒前
旭宝儿发布了新的文献求助10
5秒前
云&fudong完成签到,获得积分10
6秒前
余生发布了新的文献求助10
6秒前
天道酬勤完成签到,获得积分10
6秒前
研友_Y59785应助无限的依波采纳,获得10
6秒前
6秒前
暗能量完成签到,获得积分10
7秒前
Li猪猪完成签到,获得积分10
7秒前
saluo完成签到,获得积分10
7秒前
luiii完成签到,获得积分10
7秒前
wse完成签到,获得积分10
8秒前
如意雅山发布了新的文献求助10
9秒前
9秒前
chenlike完成签到,获得积分10
9秒前
9秒前
Nuyoah完成签到 ,获得积分10
10秒前
panjunlu完成签到,获得积分10
10秒前
10秒前
李小新完成签到 ,获得积分10
10秒前
Ava应助木亢王足各采纳,获得10
11秒前
wushangyu发布了新的文献求助10
11秒前
完美世界应助Gj采纳,获得10
11秒前
12秒前
是真的完成签到 ,获得积分10
12秒前
苏silence发布了新的文献求助10
12秒前
gnr2000发布了新的文献求助10
13秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986618
求助须知:如何正确求助?哪些是违规求助? 3529071
关于积分的说明 11243225
捐赠科研通 3267556
什么是DOI,文献DOI怎么找? 1803784
邀请新用户注册赠送积分活动 881185
科研通“疑难数据库(出版商)”最低求助积分说明 808582